Secretion of biologically active recombinant fibrinogen by yeast. 1995

S N Roy, and B Kudryk, and C M Redman
Lindsley F. Kimball Research Institute of the New York Blood Center, New York 10021, USA.

Fibrinogen (340 kDa) is a plasma protein that plays an important role in the final stages of blood clotting. Human fibrinogen is a dimer with each half-molecule composed of three different polypeptides (A alpha, 67 kDa; B beta, 57 kDa; gamma, 47 kDa). To understand the mechanism of fibrinogen chain assembly and secretion and to obtain a system capable of producing substantial amounts of fibrinogen for structure-function studies, we developed a recombinant system capable of secreting fibrinogen. An expression vector (pYES2) was constructed with individual fibrinogen chain cDNAs under the control of a Gal-1 promoter fused with mating factor F alpha 1 prepro secretion signal (SS) cascade. In addition, other constructs were prepared with combinations of cDNAs encoding two chains or all three chains in tandem. Each chain was under the control of the Gal-1 promoter. These constructs were used to transform Saccharomyces cerevisiae (INVSC1; Mat alpha his3-delta 1 leu2 trp1-289 ura3-52) in selective media. Single colonies from transformed yeast cells were grown in synthetic media with 4% raffinose to a density of 1 x 10(8) cells/ml and induced with 2% galactose for 16 h. Yeast cells expressing all three chains contained fibrinogen precursors and nascent fibrinogen and secreted about 30 micrograms/ml of fibrinogen into the culture medium. The B beta and gamma chains, but not A alpha, were glycosylated. Glycosylation of B beta and gamma chains was inhibited by treatment of transformed yeast cells with tunicamycin. Intracellular B beta and gamma chains, but not the A alpha chains in secreted fibrinogen, were cleaved by endoglycosidase H. Carbohydrate analysis indicated that secreted recombinant fibrinogen contained N-linked asialo-galactosylated biantennary oligosaccharide. Recombinant fibrinogen yielded the characteristic plasmin digestion products, fragments D and E, that were immunologically indistinct from the same fragments obtained from plasma fibrinogen. The recombinant fibrinogen was shown to be biologically active in that it could form a thrombin-induced clot, which, in the presence of factor XIIIa, could undergo gamma chain dimerization and A alpha chain polymer formation.

UI MeSH Term Description Entries
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D001777 Blood Coagulation The process of the interaction of BLOOD COAGULATION FACTORS that results in an insoluble FIBRIN clot. Blood Clotting,Coagulation, Blood,Blood Clottings,Clotting, Blood
D002241 Carbohydrates A class of organic compounds composed of carbon, hydrogen, and oxygen in a ratio of Cn(H2O)n. The largest class of organic compounds, including STARCH; GLYCOGEN; CELLULOSE; POLYSACCHARIDES; and simple MONOSACCHARIDES. Carbohydrate
D005340 Fibrinogen Plasma glycoprotein clotted by thrombin, composed of a dimer of three non-identical pairs of polypeptide chains (alpha, beta, gamma) held together by disulfide bonds. Fibrinogen clotting is a sol-gel change involving complex molecular arrangements: whereas fibrinogen is cleaved by thrombin to form polypeptides A and B, the proteolytic action of other enzymes yields different fibrinogen degradation products. Coagulation Factor I,Factor I,Blood Coagulation Factor I,gamma-Fibrinogen,Factor I, Coagulation,gamma Fibrinogen
D005341 Fibrinolysin A product of the lysis of plasminogen (profibrinolysin) by PLASMINOGEN activators. It is composed of two polypeptide chains, light (B) and heavy (A), with a molecular weight of 75,000. It is the major proteolytic enzyme involved in blood clot retraction or the lysis of fibrin and quickly inactivated by antiplasmins. Plasmin,Fibrogammin,Glu-Plasmin,Protease F,Thrombolysin,Glu Plasmin
D005822 Genetic Vectors DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition. Cloning Vectors,Shuttle Vectors,Vectors, Genetic,Cloning Vector,Genetic Vector,Shuttle Vector,Vector, Cloning,Vector, Genetic,Vector, Shuttle,Vectors, Cloning,Vectors, Shuttle
D006026 Glycoside Hydrolases Any member of the class of enzymes that catalyze the cleavage of the glycosidic linkage of glycosides and the addition of water to the resulting molecules. Endoglycosidase,Exoglycosidase,Glycohydrolase,Glycosidase,Glycosidases,Glycoside Hydrolase,Endoglycosidases,Exoglycosidases,Glycohydrolases,Hydrolase, Glycoside,Hydrolases, Glycoside
D006031 Glycosylation The synthetic chemistry reaction or enzymatic reaction of adding carbohydrate or glycosyl groups. GLYCOSYLTRANSFERASES carry out the enzymatic glycosylation reactions. The spontaneous, non-enzymatic attachment of reducing sugars to free amino groups in proteins, lipids, or nucleic acids is called GLYCATION (see MAILLARD REACTION). Protein Glycosylation,Glycosylation, Protein
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

S N Roy, and B Kudryk, and C M Redman
January 1999, The Journal of biological chemistry,
S N Roy, and B Kudryk, and C M Redman
June 2008, Protein expression and purification,
S N Roy, and B Kudryk, and C M Redman
April 1998, Biochemical and biophysical research communications,
S N Roy, and B Kudryk, and C M Redman
April 1991, Journal of industrial microbiology,
S N Roy, and B Kudryk, and C M Redman
February 1997, Journal of hematotherapy,
S N Roy, and B Kudryk, and C M Redman
March 2000, Protein expression and purification,
S N Roy, and B Kudryk, and C M Redman
July 1989, Research communications in chemical pathology and pharmacology,
Copied contents to your clipboard!