The effects of streptozotocin-induced diabetes and insulin supplementation on expression of the glycogen phosphorylase gene in rat liver. 1995

P V Rao, and S Pugazhenthi, and R L Khandelwal
Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Canada.

We have previously observed that the chronic effects of streptozotocin-induced diabetes cause a decrease in the total hepatic glycogen phosphorylase activity with a corresponding reduction in the phosphorylase protein levels. These effects were normalized by insulin administration to diabetic rats. There was no change in the total glycogen synthase activity as a result of diabetes or insulin supplementation. These results are extended to examine the effects of diabetes and insulin administration to diabetic animals on the expression of phosphorylase and glycogen synthase enzymes. The expression (i.e. mRNA levels) of phosphorylase was down-regulated (45% of normal levels) in diabetic livers, and this was normalized by insulin supplementation to diabetic animals. Diabetes or insulin supplementation to diabetic rats showed no effect on the transcription rate of phosphorylase. As expected, diabetes (or insulin administration to diabetic animals) did not cause any alteration in the mRNA levels or in the transcription rate of hepatic glycogen synthase. The stability of phosphorylase mRNA was then examined using hepatocytes prepared from normal and diabetic rats. Diabetes caused a decrease in the half-life of phosphorylase mRNA from 14 h in normal hepatocytes to 6.5 h in diabetic hepatocytes. Insulin supplementation to the medium of diabetic hepatocytes increased the half-life of phosphorylase mRNA to a level comparable with normal values. This study indicates that the chronic effect of insulin on the activation of the total hepatic phosphorylase activity (and protein) is mediated through the stabilization of its mRNA levels.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D003921 Diabetes Mellitus, Experimental Diabetes mellitus induced experimentally by administration of various diabetogenic agents or by PANCREATECTOMY. Alloxan Diabetes,Streptozocin Diabetes,Streptozotocin Diabetes,Experimental Diabetes Mellitus,Diabete, Streptozocin,Diabetes, Alloxan,Diabetes, Streptozocin,Diabetes, Streptozotocin,Streptozocin Diabete
D006005 Phosphorylases A class of glucosyltransferases that catalyzes the degradation of storage polysaccharides, such as glucose polymers, by phosphorolysis in animals (GLYCOGEN PHOSPHORYLASE) and in plants (STARCH PHOSPHORYLASE). Glucan Phosphorylase,Phosphorylase,alpha-Glucan Phosphorylases
D006006 Glycogen Synthase An enzyme that catalyzes the transfer of D-glucose from UDPglucose into 1,4-alpha-D-glucosyl chains. EC 2.4.1.11. Glycogen (Starch) Synthase,Glycogen Synthetase,Glycogen Synthase I,Synthase D,Synthase I,UDP-Glucose Glycogen Glucosyl Transferase,Synthase, Glycogen,Synthetase, Glycogen,UDP Glucose Glycogen Glucosyl Transferase
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D013311 Streptozocin An antibiotic that is produced by Stretomyces achromogenes. It is used as an antineoplastic agent and to induce diabetes in experimental animals. Streptozotocin,2-Deoxy-2-((methylnitrosoamino)carbonyl)amino-D-glucose,Streptozotocine,Zanosar

Related Publications

P V Rao, and S Pugazhenthi, and R L Khandelwal
December 1977, The Biochemical journal,
P V Rao, and S Pugazhenthi, and R L Khandelwal
April 1995, Drug metabolism and disposition: the biological fate of chemicals,
P V Rao, and S Pugazhenthi, and R L Khandelwal
January 1993, Biology of the neonate,
P V Rao, and S Pugazhenthi, and R L Khandelwal
April 1990, Biochimica et biophysica acta,
P V Rao, and S Pugazhenthi, and R L Khandelwal
August 1982, The Journal of biological chemistry,
P V Rao, and S Pugazhenthi, and R L Khandelwal
March 1990, Metabolism: clinical and experimental,
P V Rao, and S Pugazhenthi, and R L Khandelwal
January 1994, Journal of neuroimmunology,
P V Rao, and S Pugazhenthi, and R L Khandelwal
February 1970, Proceedings of the National Academy of Sciences of the United States of America,
P V Rao, and S Pugazhenthi, and R L Khandelwal
November 1989, The Biochemical journal,
Copied contents to your clipboard!