Molecular cloning of a new member of the p21-Cdc42/Rac-activated kinase (PAK) family. 1995

E Manser, and C Chong, and Z S Zhao, and T Leung, and G Michael, and C Hall, and L Lim
Institute of Molecular and Cell Biology, National University of Singapore, Kent Ridge, Singapore.

A number of "target" proteins for the Rho family of small GTP-binding proteins have now been identified, including the protein kinases ACK and p65PAK (Manser, E., Leung, T., Salihuddin, H., Zhao, Z.-S., and Lim, L. (1994) Nature 367, 40-46). The purified serine/threonine kinase p65PAK has been shown to be directly activated by GTP-Rac1 or GTP-Cdc42. Here we report the cDNA sequence encoding a new brain-enriched PAK isoform beta-PAK, which shares 79% amino acid identity with the previously described alpha-isoform. Their mRNAs are differentially expressed in the brain, with alpha-PAK mRNA being particularly abundant in motor-associated regions. In vitro translation products of the alpha- and beta-PAK cDNAs exhibited relative molecular masses of 68,000 and 65,000, respectively, by SDS-polyacrylamide analysis. A specific beta-PAK peptide sequence was obtained from rat brain-purified p65PAK. Recombinant alpha- and beta-PAKs exhibited an increase in kinase activity mediated by GTP-p21 induced autophosphorylation. Cdc42 was a more potent activator in vitro of alpha-PAK kinase, and the fully activated enzyme is 300 times more active than the unphosphorylated form. Interestingly the down-regulation in the binding of p21s to recombinant beta-PAK and brain p65PAK, which is observed upon kinase activation does not occur with recombinant alpha-PAK.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D006160 Guanosine Triphosphate Guanosine 5'-(tetrahydrogen triphosphate). A guanine nucleotide containing three phosphate groups esterified to the sugar moiety. GTP,Triphosphate, Guanosine
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D017346 Protein Serine-Threonine Kinases A group of enzymes that catalyzes the phosphorylation of serine or threonine residues in proteins, with ATP or other nucleotides as phosphate donors. Protein-Serine-Threonine Kinases,Serine-Threonine Protein Kinase,Serine-Threonine Protein Kinases,Protein-Serine Kinase,Protein-Serine-Threonine Kinase,Protein-Threonine Kinase,Serine Kinase,Serine-Threonine Kinase,Serine-Threonine Kinases,Threonine Kinase,Kinase, Protein-Serine,Kinase, Protein-Serine-Threonine,Kinase, Protein-Threonine,Kinase, Serine-Threonine,Kinases, Protein Serine-Threonine,Kinases, Protein-Serine-Threonine,Kinases, Serine-Threonine,Protein Kinase, Serine-Threonine,Protein Kinases, Serine-Threonine,Protein Serine Kinase,Protein Serine Threonine Kinase,Protein Serine Threonine Kinases,Protein Threonine Kinase,Serine Threonine Kinase,Serine Threonine Kinases,Serine Threonine Protein Kinase,Serine Threonine Protein Kinases

Related Publications

E Manser, and C Chong, and Z S Zhao, and T Leung, and G Michael, and C Hall, and L Lim
January 2002, The Journal of biological chemistry,
E Manser, and C Chong, and Z S Zhao, and T Leung, and G Michael, and C Hall, and L Lim
May 1998, Biochemistry,
E Manser, and C Chong, and Z S Zhao, and T Leung, and G Michael, and C Hall, and L Lim
May 1998, Journal of immunology (Baltimore, Md. : 1950),
E Manser, and C Chong, and Z S Zhao, and T Leung, and G Michael, and C Hall, and L Lim
April 1997, Trends in cell biology,
E Manser, and C Chong, and Z S Zhao, and T Leung, and G Michael, and C Hall, and L Lim
February 1999, The Journal of biological chemistry,
E Manser, and C Chong, and Z S Zhao, and T Leung, and G Michael, and C Hall, and L Lim
October 2001, FEBS letters,
E Manser, and C Chong, and Z S Zhao, and T Leung, and G Michael, and C Hall, and L Lim
December 2016, Archives of pharmacal research,
E Manser, and C Chong, and Z S Zhao, and T Leung, and G Michael, and C Hall, and L Lim
February 2001, The Journal of biological chemistry,
E Manser, and C Chong, and Z S Zhao, and T Leung, and G Michael, and C Hall, and L Lim
June 2019, Cardiovascular toxicology,
E Manser, and C Chong, and Z S Zhao, and T Leung, and G Michael, and C Hall, and L Lim
September 1998, Current biology : CB,
Copied contents to your clipboard!