Vitronectin enhances internalization of crocidolite asbestos by rabbit pleural mesothelial cells via the integrin alpha v beta 5. 1995

A M Boylan, and D A Sanan, and D Sheppard, and V C Broaddus
Department of Medicine, San Francisco General Hospital, California 94110, USA.

The mechanism by which pleural mesothelial cells, the likely progenitor cells of asbestos-induced mesothelioma, recognize and internalize crocidolite asbestos is unknown. Because incubation of asbestos fibers with serum increases their association with cells, we asked whether a protein coat on asbestos increased internalization of fibers via specific cellular receptors. Coating crocidolite with citronectin, but not with fibronectin or other proteins, increased fiber internalization by rabbit pleural mesothelial cells, as measured by a new technique using fluorescence confocal microscopy. Receptors for vitronectin, alpha v beta 3 and alpha v beta 5, were identified on mesothelial cells. Inhibiting vitronectin receptors by plating cells on a vitronectin substrate or incubating cells with excess soluble vitronectin reduced internalization of vitronectin-coated crocidolite. Inhibition of alpha v beta 5, but not alpha v beta 3, with blocking antibodies similarly reduced internalization. In addition, alpha v beta 5, but not alpha v beta 3, showed immunocytochemical colocalization with fibers. Of biologic relevance, coating crocidolite with serum also increased internalization via alpha v beta 5, an effect dependent on the vitronectin in serum. We conclude that pleural mesothelial cells recognize and internalize vitronectin- and serum-coated asbestos via the integrin alpha v beta 5. Since integrins initiate some of the same signaling pathways as does asbestos, our findings may provide insights into the mechanisms of asbestos-induced biologic effects.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009842 Oligopeptides Peptides composed of between two and twelve amino acids. Oligopeptide
D010994 Pleura The thin serous membrane enveloping the lungs (LUNG) and lining the THORACIC CAVITY. Pleura consist of two layers, the inner visceral pleura lying next to the pulmonary parenchyma and the outer parietal pleura. Between the two layers is the PLEURAL CAVITY which contains a thin film of liquid. Parietal Pleura,Visceral Pleura,Pleura, Parietal,Pleura, Visceral
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D005453 Fluorescence The property of emitting radiation while being irradiated. The radiation emitted is usually of longer wavelength than that incident or absorbed, e.g., a substance can be irradiated with invisible radiation and emit visible light. X-ray fluorescence is used in diagnosis.
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016023 Integrins A family of transmembrane glycoproteins (MEMBRANE GLYCOPROTEINS) consisting of noncovalent heterodimers. They interact with a wide variety of ligands including EXTRACELLULAR MATRIX PROTEINS; COMPLEMENT, and other cells, while their intracellular domains interact with the CYTOSKELETON. The integrins consist of at least three identified families: the cytoadhesin receptors (RECEPTORS, CYTOADHESIN), the leukocyte adhesion receptors (RECEPTORS, LEUKOCYTE ADHESION), and the VERY LATE ANTIGEN RECEPTORS. Each family contains a common beta-subunit (INTEGRIN BETA CHAINS) combined with one or more distinct alpha-subunits (INTEGRIN ALPHA CHAINS). These receptors participate in cell-matrix and cell-cell adhesion in many physiologically important processes, including embryological development; HEMOSTASIS; THROMBOSIS; WOUND HEALING; immune and nonimmune defense mechanisms; and oncogenic transformation. Integrin

Related Publications

A M Boylan, and D A Sanan, and D Sheppard, and V C Broaddus
May 1997, The international journal of biochemistry & cell biology,
A M Boylan, and D A Sanan, and D Sheppard, and V C Broaddus
June 1993, The Journal of biological chemistry,
A M Boylan, and D A Sanan, and D Sheppard, and V C Broaddus
October 1994, The Journal of biological chemistry,
A M Boylan, and D A Sanan, and D Sheppard, and V C Broaddus
November 1996, The Journal of clinical investigation,
A M Boylan, and D A Sanan, and D Sheppard, and V C Broaddus
August 2011, Mutation research,
A M Boylan, and D A Sanan, and D Sheppard, and V C Broaddus
July 1990, The Journal of biological chemistry,
A M Boylan, and D A Sanan, and D Sheppard, and V C Broaddus
August 1995, The Journal of biological chemistry,
A M Boylan, and D A Sanan, and D Sheppard, and V C Broaddus
June 2005, Seminars in thrombosis and hemostasis,
A M Boylan, and D A Sanan, and D Sheppard, and V C Broaddus
July 1995, Molecular endocrinology (Baltimore, Md.),
Copied contents to your clipboard!