Peptide binding to MHC class I molecules: implications for antigenic peptide prediction. 1995

K C Parker, and M Shields, and M DiBrino, and A Brooks, and J E Coligan
Laboratory of Molecular Structure, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md 20852-1727, USA.

The human mayor histocompatibility complex class I molecule HLA-A2 preferentially binds peptides that contain Leu at P2 and Val or Leu at the C terminus. The other amino acids in the peptide also contribute to binding positively or negatively. It is possible to estimate the binding stability of HLA-A2 complexes containing particular peptides by applying coefficients, deduced from a large amount of binding data, that quantify the relative contribution of each amino acid at each position. In this review, we describe the molecular basis for these coefficients and demonstrate that estimates of binding stability based on the coefficients are generally concordant with experimental measurements of binding affinities. Peptides that contained cysteine were predicted less well, possibly because of complications resulting from peptide dimerization and oxidation. Apparently, peptide binding affinity is largely controlled by the rate of dissociation of the HLA/peptide/beta 2-microglobulin complex, whereas the rate of formation of the complex has less impact on peptide affinity. Although peptides that bind tightly to HLA-A2, including many antigenic peptides bind much more weakly. Therefore, a full understanding of why certain peptides are immunodominant will require further research.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D006183 H-2 Antigens The major group of transplantation antigens in the mouse. H2 Antigens,Antigens, H-2,Antigens, H2,H 2 Antigens
D006680 HLA Antigens Antigens determined by leukocyte loci found on chromosome 6, the major histocompatibility loci in humans. They are polypeptides or glycoproteins found on most nucleated cells and platelets, determine tissue types for transplantation, and are associated with certain diseases. Human Leukocyte Antigen,Human Leukocyte Antigens,Leukocyte Antigens,HL-A Antigens,Antigen, Human Leukocyte,Antigens, HL-A,Antigens, HLA,Antigens, Human Leukocyte,Antigens, Leukocyte,HL A Antigens,Leukocyte Antigen, Human,Leukocyte Antigens, Human
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D015394 Molecular Structure The location of the atoms, groups or ions relative to one another in a molecule, as well as the number, type and location of covalent bonds. Structure, Molecular,Molecular Structures,Structures, Molecular

Related Publications

K C Parker, and M Shields, and M DiBrino, and A Brooks, and J E Coligan
September 1995, Journal of immunological methods,
K C Parker, and M Shields, and M DiBrino, and A Brooks, and J E Coligan
January 2003, Applied bioinformatics,
K C Parker, and M Shields, and M DiBrino, and A Brooks, and J E Coligan
October 1994, Molecular immunology,
K C Parker, and M Shields, and M DiBrino, and A Brooks, and J E Coligan
April 2006, Proteins,
K C Parker, and M Shields, and M DiBrino, and A Brooks, and J E Coligan
January 1997, Biopolymers,
K C Parker, and M Shields, and M DiBrino, and A Brooks, and J E Coligan
May 2001, Current protocols in immunology,
K C Parker, and M Shields, and M DiBrino, and A Brooks, and J E Coligan
May 1991, Nature,
K C Parker, and M Shields, and M DiBrino, and A Brooks, and J E Coligan
June 1998, Journal of immunological methods,
K C Parker, and M Shields, and M DiBrino, and A Brooks, and J E Coligan
September 2008, BMC bioinformatics,
K C Parker, and M Shields, and M DiBrino, and A Brooks, and J E Coligan
April 1995, European journal of cell biology,
Copied contents to your clipboard!