Organization of the major and minor capsid proteins in human papillomavirus type 33 virus-like particles. 1995

M Sapp, and C Volpers, and M Müller, and R E Streeck
Institute of Medical Microbiology, University of Mainz, Germany.

The organization of the major (L1) and minor (L2) proteins in the human papillomavirus capsid is still largely unknown. In this study we analysed the disulphide bonding between L1 proteins and the association of L2 proteins with capsomers using virus-like particles obtained in insect cells by co-expression of the L1 and L2 genes of human papillomavirus type 33. About 50% of the L1 protein molecules in these particles (1.29 g/cm3) formed disulphide-bonded trimers. Reduction of the intermolecular disulphide bonds by dithiotreitol (DTT) treatment caused disassembly of virus-like particles into capsomers. This indicates that disulphide bonds between capsomers at the threefold symmetry positions of the capsid are essential for the assembly of the papillomavirus capsid. In contrast, the L2 protein was not engaged in intermolecular disulphide bonding. The L2 protein remained associated with capsomers on disassembly by treatment with DTT. When the disassembly was carried out in 0.65 M-NaCl, complete L2 protein molecules bound preferentially to capsomer oligomers, whereas truncated L2 protein molecules bound only to monomers. In 0.15 M-NaCl only complete L2 protein molecules remained bound to capsomers. This indicates that different regions of the L2 protein molecule are differentially involved in the association of the papillomavirus capsid.

UI MeSH Term Description Entries
D009856 Oncogene Proteins, Viral Products of viral oncogenes, most commonly retroviral oncogenes. They usually have transforming and often protein kinase activities. Viral Oncogene Proteins,Viral Transforming Proteins,v-onc Proteins,Transforming Proteins, Viral,v onc Proteins
D002213 Capsid The outer protein protective shell of a virus, which protects the viral nucleic acid. Capsids are composed of repeating units (capsomers or capsomeres) of CAPSID PROTEINS which when assembled together form either an icosahedral or helical shape. Procapsid,Prohead,Capsids,Procapsids,Proheads
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004220 Disulfides Chemical groups containing the covalent disulfide bonds -S-S-. The sulfur atoms can be bound to inorganic or organic moieties. Disulfide
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014771 Virion The infective system of a virus, composed of the viral genome, a protein core, and a protein coat called a capsid, which may be naked or enclosed in a lipoprotein envelope called the peplos. Virus Particle,Viral Particle,Viral Particles,Particle, Viral,Particle, Virus,Particles, Viral,Particles, Virus,Virions,Virus Particles
D027383 Papillomaviridae A family of small, non-enveloped DNA viruses infecting birds and most mammals, especially humans. They are grouped into multiple genera, but the viruses are highly host-species specific and tissue-restricted. They are commonly divided into hundreds of papillomavirus "types", each with specific gene function and gene control regions, despite sequence homology. Human papillomaviruses are found in the genera ALPHAPAPILLOMAVIRUS; BETAPAPILLOMAVIRUS; GAMMAPAPILLOMAVIRUS; and MUPAPILLOMAVIRUS.
D036022 Capsid Proteins Proteins that form the CAPSID of VIRUSES. Procapsid Protein,Procapsid Proteins,Viral Coat Protein,Viral Coat Proteins,Viral V Antigens,Viral V Proteins,Capsid Protein,Viral Outer Coat Protein,Antigens, Viral V,Coat Protein, Viral,V Antigens, Viral,V Proteins, Viral

Related Publications

M Sapp, and C Volpers, and M Müller, and R E Streeck
September 2009, The Indian journal of medical research,
M Sapp, and C Volpers, and M Müller, and R E Streeck
December 1999, Protein expression and purification,
M Sapp, and C Volpers, and M Müller, and R E Streeck
October 2006, Virology journal,
M Sapp, and C Volpers, and M Müller, and R E Streeck
March 2007, The Journal of general virology,
M Sapp, and C Volpers, and M Müller, and R E Streeck
August 1994, Biochemical Society transactions,
Copied contents to your clipboard!