Glia-to-axon communication: enrichment of glial proteins transferred to the squid giant axon. 1995

R A Sheller, and M Tytell, and M Smyers, and G D Bittner
Department of Zoology, University of Texas at Austin, USA.

The transfer of newly synthesized proteins from the glial sheath into the axon is a well-documented process for the squid giant axon. In this study, we used a novel approach to separate the transferred glial proteins (TGPs) from the endogenous axoplasmic proteins of the squid giant axon. Axoplasm, containing radiolabelled TGPs, was extruded as a cylinder and immersed in an intracellular buffer. After 1-30 min, the TGPs were enriched in the intracellular buffer, because they were eluted from the axoplasm into the intracellular buffer much faster than the endogenous axoplasmic proteins. Most of the TGPs enriched in the intracellular buffer did not pellet when centrifuged at 24,000 g for 20 min and were susceptible to protease digestion without the addition of Triton X-100. Additionally, transmission electron microscopic autoradiography of intact axons, containing radiolabelled TGPs, suggested that most TGPs were not associated with vesicular organelles within the axon. We conclude that most of the TGPs are not contained within vesicles in the axoplasm of the squid giant axon, as would be expected if the mechanism of glia-to-axon transfer were conventional exocytosis-endocytosis or microphagocytosis.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009457 Neuroglia The non-neuronal cells of the nervous system. They not only provide physical support, but also respond to injury, regulate the ionic and chemical composition of the extracellular milieu, participate in the BLOOD-BRAIN BARRIER and BLOOD-RETINAL BARRIER, form the myelin insulation of nervous pathways, guide neuronal migration during development, and exchange metabolites with neurons. Neuroglia have high-affinity transmitter uptake systems, voltage-dependent and transmitter-gated ion channels, and can release transmitters, but their role in signaling (as in many other functions) is unclear. Bergmann Glia,Bergmann Glia Cells,Bergmann Glial Cells,Glia,Glia Cells,Satellite Glia,Satellite Glia Cells,Satellite Glial Cells,Glial Cells,Neuroglial Cells,Bergmann Glia Cell,Bergmann Glial Cell,Cell, Bergmann Glia,Cell, Bergmann Glial,Cell, Glia,Cell, Glial,Cell, Neuroglial,Cell, Satellite Glia,Cell, Satellite Glial,Glia Cell,Glia Cell, Bergmann,Glia Cell, Satellite,Glia, Bergmann,Glia, Satellite,Glial Cell,Glial Cell, Bergmann,Glial Cell, Satellite,Glias,Neuroglial Cell,Neuroglias,Satellite Glia Cell,Satellite Glial Cell,Satellite Glias
D010450 Endopeptidases A subclass of PEPTIDE HYDROLASES that catalyze the internal cleavage of PEPTIDES or PROTEINS. Endopeptidase,Peptide Peptidohydrolases
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D002450 Cell Communication Any of several ways in which living cells of an organism communicate with one another, whether by direct contact between cells or by means of chemical signals carried by neurotransmitter substances, hormones, and cyclic AMP. Cell Interaction,Cell-to-Cell Interaction,Cell Communications,Cell Interactions,Cell to Cell Interaction,Cell-to-Cell Interactions,Communication, Cell,Communications, Cell,Interaction, Cell,Interaction, Cell-to-Cell,Interactions, Cell,Interactions, Cell-to-Cell
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001345 Autoradiography The making of a radiograph of an object or tissue by recording on a photographic plate the radiation emitted by radioactive material within the object. (Dorland, 27th ed) Radioautography
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D013572 Synaptic Vesicles Membrane-bound compartments which contain transmitter molecules. Synaptic vesicles are concentrated at presynaptic terminals. They actively sequester transmitter molecules from the cytoplasm. In at least some synapses, transmitter release occurs by fusion of these vesicles with the presynaptic membrane, followed by exocytosis of their contents. Synaptic Vesicle,Vesicle, Synaptic,Vesicles, Synaptic

Related Publications

R A Sheller, and M Tytell, and M Smyers, and G D Bittner
December 1984, Brain research,
R A Sheller, and M Tytell, and M Smyers, and G D Bittner
August 1977, The Journal of cell biology,
R A Sheller, and M Tytell, and M Smyers, and G D Bittner
October 2002, The Biological bulletin,
R A Sheller, and M Tytell, and M Smyers, and G D Bittner
May 1978, Journal of biochemistry,
R A Sheller, and M Tytell, and M Smyers, and G D Bittner
April 1992, Journal of neurobiology,
R A Sheller, and M Tytell, and M Smyers, and G D Bittner
January 1979, Brain research bulletin,
R A Sheller, and M Tytell, and M Smyers, and G D Bittner
April 1974, Proceedings of the National Academy of Sciences of the United States of America,
R A Sheller, and M Tytell, and M Smyers, and G D Bittner
February 1979, Brain research,
R A Sheller, and M Tytell, and M Smyers, and G D Bittner
September 1963, Biophysical journal,
R A Sheller, and M Tytell, and M Smyers, and G D Bittner
January 2001, Neuroscience,
Copied contents to your clipboard!