Plasmid pT181 replication is decreased at high levels of RepC per plasmid copy. 1995

S Iordanescu
Public Health Research Institute, New York, New York 10016, USA.

The replication of staphylococcal plasmid pT181 is indirectly controlled at the level of the synthesis of its replication initiator, RepC. As a result, high levels of RepC synthesis per plasmid copy were expected to lead to autocatalytic plasmid replication, which secondarily would affect host physiology. Surprisingly, RepC overexpression was found to lead to a rapid decrease in pT181 copy number and replication rate. These effects depended on the ratio of RepC to the pT181 replication origin rather than on the absolute amount of RepC in the cell. In a wild-type host, the increase in RepC/plasmid copy also inhibited chromosome replication and cell division. The changes in host physiology did not play any role in the decrease in pT181 replication caused by RepC overexpression since pT181 replication responded in the same way in a host mutant insensitive to the effects of RepC induction. These results suggest that pT181, the prototype of an entire class of plasmids from Gram-positive bacteria, responds to overexpression of its replication initiator by a decrease in plasmid replication.

UI MeSH Term Description Entries
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D012093 Replicon Any DNA sequence capable of independent replication or a molecule that possesses a REPLICATION ORIGIN and which is therefore potentially capable of being replicated in a suitable cell. (Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Replication Unit,Replication Units,Replicons,Unit, Replication,Units, Replication
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D013211 Staphylococcus aureus Potentially pathogenic bacteria found in nasal membranes, skin, hair follicles, and perineum of warm-blooded animals. They may cause a wide range of infections and intoxications.
D015964 Gene Expression Regulation, Bacterial Any of the processes by which cytoplasmic or intercellular factors influence the differential control of gene action in bacteria. Bacterial Gene Expression Regulation,Regulation of Gene Expression, Bacterial,Regulation, Gene Expression, Bacterial

Related Publications

S Iordanescu
September 1986, Plasmid,
S Iordanescu
February 1990, The Journal of biological chemistry,
S Iordanescu
February 1985, Proceedings of the National Academy of Sciences of the United States of America,
S Iordanescu
December 1988, Biochimica et biophysica acta,
S Iordanescu
April 1988, Nucleic acids research,
S Iordanescu
July 1996, Microbiology (Reading, England),
Copied contents to your clipboard!