Backscatter dose perturbation in kilovoltage photon beams at high atomic number interfaces. 1995

I J Das, and K L Chopra
Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA.

Dose perturbations at tissue interfaces have been of significant concern since the beginning of this century. However, comprehensive studies related to the backscatter perturbation in kilovoltage beams are still limited. The dose perturbation depends on various parameters, including beam energy, field size, and the thickness, width, position, and atomic number, Z, of the inhomogeneity creating the interface with soft tissue. Using a thin window parallel plate ion chamber having relatively flat response at low energies, the dose perturbation was measured as backscatter dose perturbation factor, BSDF, at various interfaces in kilovoltage x-ray beams. The BSDF is defined as the ratio of doses with and without an interface for identical setup conditions. Results indicate that the BSDF is strongly dependent on beam energy, like the backscatter factor. Contrary to its behavior in megavoltage beams, BSDF in kilovoltage beams does depend on the field size, suggesting a contribution from scattered photons and fluorescent radiation, originating in the high-Z material. The thickness of the high-Z medium is not critical, since a fraction of a millimeter is sufficient to provide full backscatter. The interface effect with wide inhomogeneity has two distinct regions: the high dose region (BSDF > 1.0), which is very localized and disappears within a fraction of a millimeter, and the low dose region (BSDF < 1.0), which is observed up to 10 cm. The dependence of BSDF is neither a quadratic function of Z nor a cube root of beam energy, indicating that the interface effect is complex and not predominantly due to photoelectron transport.

UI MeSH Term Description Entries
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008961 Models, Structural A representation, generally small in scale, to show the structure, construction, or appearance of something. (From Random House Unabridged Dictionary, 2d ed) Model, Structural,Structural Model,Structural Models
D011878 Radiotherapy The use of IONIZING RADIATION to treat malignant NEOPLASMS and some benign conditions. Radiotherapy, Targeted,Targeted Radiotherapy,Radiation Therapy,Radiation Therapy, Targeted,Radiation Treatment,Targeted Radiation Therapy,Radiation Therapies,Radiation Therapies, Targeted,Radiation Treatments,Radiotherapies,Radiotherapies, Targeted,Targeted Radiation Therapies,Targeted Radiotherapies,Therapies, Radiation,Therapies, Targeted Radiation,Therapy, Radiation,Therapy, Targeted Radiation,Treatment, Radiation
D011879 Radiotherapy Dosage The total amount of radiation absorbed by tissues as a result of radiotherapy. Dosage, Radiotherapy,Dosages, Radiotherapy,Radiotherapy Dosages
D012542 Scattering, Radiation The diversion of RADIATION (thermal, electromagnetic, or nuclear) from its original path as a result of interactions or collisions with atoms, molecules, or larger particles in the atmosphere or other media. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Radiation Scattering,Radiation Scatterings,Scatterings, Radiation
D014965 X-Rays Penetrating electromagnetic radiation emitted when the inner orbital electrons of an atom are excited and release radiant energy. X-ray wavelengths range from 1 pm to 10 nm. Hard X-rays are the higher energy, shorter wavelength X-rays. Soft x-rays or Grenz rays are less energetic and longer in wavelength. The short wavelength end of the X-ray spectrum overlaps the GAMMA RAYS wavelength range. The distinction between gamma rays and X-rays is based on their radiation source. Grenz Ray,Grenz Rays,Roentgen Ray,Roentgen Rays,X Ray,X-Ray,Xray,Radiation, X,X-Radiation,Xrays,Ray, Grenz,Ray, Roentgen,Ray, X,Rays, Grenz,Rays, Roentgen,Rays, X,X Radiation,X Rays,X-Radiations
D017785 Photons Discrete concentrations of energy, apparently massless elementary particles, that move at the speed of light. They are the unit or quantum of electromagnetic radiation. Photons are emitted when electrons move from one energy state to another. (From Hawley's Condensed Chemical Dictionary, 11th ed)

Related Publications

Copied contents to your clipboard!