Tumor necrosis factor-alpha and interleukin-1 alpha enhance glucose utilization by astrocytes: involvement of phospholipase A2. 1995

N Yu, and D Maciejewski-Lenoir, and F E Bloom, and P J Magistretti
Department of Neuropharmacology, Scripps Research Institute, La Jolla, California 92037, USA.

Cytokines can be produced within the nervous system by various cell types, including astrocytes, which secrete them in response to pathological processes such as viral infections. Astrocytes are known to play an important role in the homeostasis of the nervous system, in particular, by contributing to the regulation of local energy metabolism. We report that tumor necrosis factor-alpha (TNF-alpha) and interleukin-1 alpha (IL-1 alpha) markedly stimulate glucose uptake and phosphorylation in primary cultures of neonatal murine astrocytes, as determined with [3H]-2-deoxyglucose ([3H]2DG). This effect is both concentration dependent, with observed EC50 values of 8 ng/ml for TNF-alpha and 30 pg/ml for IL-1 alpha, and time dependent, with a maximal response observed 24 hr after cytokine application. The effects of TNF-alpha and IL-1 alpha on glucose uptake and phosphorylation appear to be mediated by the phospholipase A2 signal transduction pathway. Evidence in support of this includes (i) inhibition by mepacrine, a phospholipase A2 inhibitor, of [3H]2DG uptake evoked by TNF-alpha and IL-1 alpha, and (ii) stimulation of [3H]arachidonic acid release by TNF-alpha and IL-1 alpha. Protein kinase C activation does not appear to be involved as the specific protein kinase C inhibitor Ro 31-7549 does not abolish TNF-alpha- or IL-1 alpha-induced increase in [3H]2DG uptake and phosphorylation. The additional glucose imported by astrocytes on exposure to TNF-alpha and IL-1 alpha is neither stored as glycogen nor released as glycolytically derived lactate, suggesting that it is processed through the tricarboxylic acid cycle or pentose phosphate pathway. These results demonstrate that TNF-alpha and IL-1 alpha can fundamentally perturb the energy metabolism of astrocytes, possibly impairing their ability to provide adequate energy substrates for neurons.

UI MeSH Term Description Entries
D007375 Interleukin-1 A soluble factor produced by MONOCYTES; MACROPHAGES, and other cells which activates T-lymphocytes and potentiates their response to mitogens or antigens. Interleukin-1 is a general term refers to either of the two distinct proteins, INTERLEUKIN-1ALPHA and INTERLEUKIN-1BETA. The biological effects of IL-1 include the ability to replace macrophage requirements for T-cell activation. IL-1,Lymphocyte-Activating Factor,Epidermal Cell Derived Thymocyte-Activating Factor,Interleukin I,Macrophage Cell Factor,T Helper Factor,Epidermal Cell Derived Thymocyte Activating Factor,Interleukin 1,Lymphocyte Activating Factor
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D010741 Phospholipases A Phospholipases that hydrolyze one of the acyl groups of phosphoglycerides or glycerophosphatidates.
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003847 Deoxyglucose 2-Deoxy-D-arabino-hexose. An antimetabolite of glucose with antiviral activity. 2-Deoxy-D-glucose,2-Deoxyglucose,2-Desoxy-D-glucose,2 Deoxy D glucose,2 Deoxyglucose,2 Desoxy D glucose
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001253 Astrocytes A class of large neuroglial (macroglial) cells in the central nervous system - the largest and most numerous neuroglial cells in the brain and spinal cord. Astrocytes (from "star" cells) are irregularly shaped with many long processes, including those with "end feet" which form the glial (limiting) membrane and directly and indirectly contribute to the BLOOD-BRAIN BARRIER. They regulate the extracellular ionic and chemical environment, and "reactive astrocytes" (along with MICROGLIA) respond to injury. Astroglia,Astroglia Cells,Astroglial Cells,Astrocyte,Astroglia Cell,Astroglial Cell,Astroglias,Cell, Astroglia,Cell, Astroglial

Related Publications

N Yu, and D Maciejewski-Lenoir, and F E Bloom, and P J Magistretti
September 1992, Journal of neurochemistry,
N Yu, and D Maciejewski-Lenoir, and F E Bloom, and P J Magistretti
April 2000, Neurochemistry international,
N Yu, and D Maciejewski-Lenoir, and F E Bloom, and P J Magistretti
November 1990, Cancer research,
N Yu, and D Maciejewski-Lenoir, and F E Bloom, and P J Magistretti
February 1995, Journal of cellular biochemistry,
N Yu, and D Maciejewski-Lenoir, and F E Bloom, and P J Magistretti
June 1992, Journal of leukocyte biology,
N Yu, and D Maciejewski-Lenoir, and F E Bloom, and P J Magistretti
August 1988, European journal of immunology,
N Yu, and D Maciejewski-Lenoir, and F E Bloom, and P J Magistretti
November 1993, Journal of periodontal research,
N Yu, and D Maciejewski-Lenoir, and F E Bloom, and P J Magistretti
October 2000, The Journal of neuroscience : the official journal of the Society for Neuroscience,
N Yu, and D Maciejewski-Lenoir, and F E Bloom, and P J Magistretti
May 1988, FEBS letters,
N Yu, and D Maciejewski-Lenoir, and F E Bloom, and P J Magistretti
August 1993, Lymphokine and cytokine research,
Copied contents to your clipboard!