A single amino acid change in the mouse peroxisome proliferator-activated receptor alpha alters transcriptional responses to peroxisome proliferators. 1995

M H Hsu, and C N Palmer, and K J Griffin, and E F Johnson
Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, California 92037, USA.

The mouse peroxisome proliferator-activated receptor alpha (mP-PAR alpha) can activate transcription from the CYP4A6 promoter in transient cotransfection experiments in the absence (intrinsic transactivation) or presence of added peroxisome proliferator. However, mPPAR alpha-G, in which glycine is substituted for Glu282, exhibits very low intrinsic transactivation and responds fully to added peroxisome proliferators. The two receptors, when expressed in COS-1 cells, are nuclear in localization, are expressed at similar levels, have similar stability, and bind DNA in vitro with similar efficiency. The phenotypic difference in intrinsic transactivation is not altered by overexpression of the human retinoid X receptor alpha. The mPPAR alpha-G mutant receptor displays a higher EC50 for pirinixic acid and for 5,8,11,14-eicosatetraynoic acid than the wild-type PPAR alpha. This difference in the apparent EC50 value is independent of the cell lines used and indicates that the Glu282 to glycine substitution alters the response of mPPAR alpha to peroxisome proliferators. The EC50 values obtained for each receptor with the CYP4A6 reporter construct are lower than those for a reporter derived from the acyl-CoA oxidase gene. In general, an inverse relation is evident between the apparent EC50 values and the extent of intrinsic transactivation observed. The difference in intrinsic transactivation may reflect the presence of an endogenous activator at a concentration that is not sufficient to activate the mPPAR alpha-G but that is sufficient to effect the intrinsic transactivation seen for the wild-type mPPAR alpha.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008830 Microbodies Electron-dense cytoplasmic particles bounded by a single membrane, such as PEROXISOMES; GLYOXYSOMES; and glycosomes. Glycosomes,Glycosome,Microbody
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010088 Oxidoreductases The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9) Dehydrogenases,Oxidases,Oxidoreductase,Reductases,Dehydrogenase,Oxidase,Reductase
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011743 Pyrimidines A family of 6-membered heterocyclic compounds occurring in nature in a wide variety of forms. They include several nucleic acid constituents (CYTOSINE; THYMINE; and URACIL) and form the basic structure of the barbiturates.
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell

Related Publications

M H Hsu, and C N Palmer, and K J Griffin, and E F Johnson
January 1998, Archives of toxicology. Supplement. = Archiv fur Toxikologie. Supplement,
M H Hsu, and C N Palmer, and K J Griffin, and E F Johnson
June 2004, The American journal of pathology,
M H Hsu, and C N Palmer, and K J Griffin, and E F Johnson
September 2001, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
M H Hsu, and C N Palmer, and K J Griffin, and E F Johnson
June 2014, Journal of molecular graphics & modelling,
M H Hsu, and C N Palmer, and K J Griffin, and E F Johnson
May 2002, Biochemical pharmacology,
M H Hsu, and C N Palmer, and K J Griffin, and E F Johnson
May 2000, Molecular endocrinology (Baltimore, Md.),
M H Hsu, and C N Palmer, and K J Griffin, and E F Johnson
January 1997, The Journal of biological chemistry,
Copied contents to your clipboard!