The zinc finger transcription factor Egr-1 potentiates macrophage differentiation of hematopoietic cells. 1995

K Krishnaraju, and H Q Nguyen, and D A Liebermann, and B Hoffman
Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA.

Previously we have shown that the zinc finger transcription factor Egr-1 is essential for and restricts differentiation of hematopoietic cells along the macrophage lineage, raising the possibility that Egr-1 actually plays a deterministic role in governing the development of hematopoietic precursor cells along the monocytic lineage. To test this hypothesis, we have taken advantage of interleukin-3-dependent 32Dcl3 hematopoietic precursor cells which, in addition to undergoing granulocytic differentiation in response to granulocyte colony-stimulating factor, were found to be induced for limited proliferation, but not differentiation, by granulocyte-macrophage colony-stimulating factor. It was shown that ectopic expression of Egr-1 blocked granulocyte colony-stimulating factor-induced terminal granulocytic differentiation, consistent with previous findings. In addition, ectopic expression of Egr-1 endowed 32Dcl3 cells with ability to be induced by granulocyte-macrophage colony-stimulating factor for terminal differentiation exclusively along the macrophage lineage. Thus, evidence that Egr-1 potentiates terminal macrophage differentiation has been obtained, suggesting that Egr-1 plays a deterministic role in governing the development of hematopoietic cells along the macrophage lineage.

UI MeSH Term Description Entries
D007377 Interleukin-3 A multilineage cell growth factor secreted by LYMPHOCYTES; EPITHELIAL CELLS; and ASTROCYTES which stimulates clonal proliferation and differentiation of various types of blood and tissue cells. Burst-Promoting Factor, Erythrocyte,Colony-Stimulating Factor 2 Alpha,Colony-Stimulating Factor, Mast-Cell,Colony-Stimulating Factor, Multipotential,Erythrocyte Burst-Promoting Factor,IL-3,Mast-Cell Colony-Stimulating Factor,Multipotential Colony-Stimulating Factor,P-Cell Stimulating Factor,Eosinophil-Mast Cell Growth-Factor,Hematopoietin-2,Burst Promoting Factor, Erythrocyte,Colony Stimulating Factor, Mast Cell,Colony Stimulating Factor, Multipotential,Eosinophil Mast Cell Growth Factor,Erythrocyte Burst Promoting Factor,Hematopoietin 2,Interleukin 3,Multipotential Colony Stimulating Factor,P Cell Stimulating Factor
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D006098 Granulocytes Leukocytes with abundant granules in the cytoplasm. They are divided into three groups according to the staining properties of the granules: neutrophilic, eosinophilic, and basophilic. Mature granulocytes are the NEUTROPHILS; EOSINOPHILS; and BASOPHILS. Granulocyte
D006410 Hematopoiesis The development and formation of various types of BLOOD CELLS. Hematopoiesis can take place in the BONE MARROW (medullary) or outside the bone marrow (HEMATOPOIESIS, EXTRAMEDULLARY). Hematopoiesis, Medullary,Haematopoiesis,Medullary Hematopoiesis
D006412 Hematopoietic Stem Cells Progenitor cells from which all blood cells derived. They are found primarily in the bone marrow and also in small numbers in the peripheral blood. Colony-Forming Units, Hematopoietic,Progenitor Cells, Hematopoietic,Stem Cells, Hematopoietic,Hematopoietic Progenitor Cells,Cell, Hematopoietic Progenitor,Cell, Hematopoietic Stem,Cells, Hematopoietic Progenitor,Cells, Hematopoietic Stem,Colony Forming Units, Hematopoietic,Colony-Forming Unit, Hematopoietic,Hematopoietic Colony-Forming Unit,Hematopoietic Colony-Forming Units,Hematopoietic Progenitor Cell,Hematopoietic Stem Cell,Progenitor Cell, Hematopoietic,Stem Cell, Hematopoietic,Unit, Hematopoietic Colony-Forming,Units, Hematopoietic Colony-Forming
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

K Krishnaraju, and H Q Nguyen, and D A Liebermann, and B Hoffman
September 1998, Blood,
K Krishnaraju, and H Q Nguyen, and D A Liebermann, and B Hoffman
February 2000, Arteriosclerosis, thrombosis, and vascular biology,
K Krishnaraju, and H Q Nguyen, and D A Liebermann, and B Hoffman
January 1993, Cell,
K Krishnaraju, and H Q Nguyen, and D A Liebermann, and B Hoffman
December 2002, Journal of cellular physiology,
K Krishnaraju, and H Q Nguyen, and D A Liebermann, and B Hoffman
February 1995, Molecular and cellular biology,
K Krishnaraju, and H Q Nguyen, and D A Liebermann, and B Hoffman
August 2004, Journal of molecular medicine (Berlin, Germany),
K Krishnaraju, and H Q Nguyen, and D A Liebermann, and B Hoffman
May 1994, The Journal of biological chemistry,
K Krishnaraju, and H Q Nguyen, and D A Liebermann, and B Hoffman
January 2006, Current opinion in hematology,
K Krishnaraju, and H Q Nguyen, and D A Liebermann, and B Hoffman
June 1994, Journal of immunology (Baltimore, Md. : 1950),
K Krishnaraju, and H Q Nguyen, and D A Liebermann, and B Hoffman
January 2003, Immunity,
Copied contents to your clipboard!