DNA recombinase activity of eukaryotic DNA topoisomerase I; effects of camptothecin and other inhibitors. 1995

Y Pommier, and J Jenkins, and G Kohlhagen, and F Leteurtre
Laboratory of Molecular Pharmacology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4255, USA.

DNA oligonucleotides containing a strong topoisomerase I cleavage site were used to study the DNA cleavage and strand transferase activities of calf thymus topoisomerase I (top1) in the absence and presence of camptothecin. A partially single-stranded oligonucleotide with only two nucleotides on the 3' side of the cleavage site (positions +1 and +2) was cleaved at the same position as the corresponding duplex oligonucleotide. However, cleavage in the absence of camptothecin was more pronounced than in the duplex oligonucleotide and was only partially reversible in the presence of 0.5 M NaCl, consistent with release of the dinucleotide 3' to the top1 break. Another reaction took place generating a larger DNA fragment which resulted from religation (strand transfer) of the 5'-hydroxyl terminus of the non-scissile DNA strand to the 3' end of the top1-linked oligonucleotide after loss of the +1 and +2 nucleotides. Top1 religation activity appeared efficient since only the last 5' base of the single-stranded DNA acceptor was complementary to the 3' tail of the donor DNA. Religation was not detectable with a double-stranded DNA acceptor, which is consistent with the persistence of top1-induced DNA double-strand breaks in camptothecin-treated cells. Camptothecin and other top1 inhibitors enhanced cleavage in both the partially single-stranded and the duplex oligonucleotides, indicating that they did not inhibit the induction of top1-mediated DNA cleavage but primarily blocked the religation step of the enzyme catalytic cycle. The top1 DNA strand transferase activity was reversibly inhibited by camptothecin and several derivatives, as well as saintopin. These results are discussed in terms of camptothecin-induced DNA recombinations.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009838 Oligodeoxyribonucleotides A group of deoxyribonucleotides (up to 12) in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties. Oligodeoxynucleotide,Oligodeoxyribonucleotide,Oligodeoxynucleotides
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D002166 Camptothecin An alkaloid isolated from the stem wood of the Chinese tree, Camptotheca acuminata. This compound selectively inhibits the nuclear enzyme DNA TOPOISOMERASES, TYPE I. Several semisynthetic analogs of camptothecin have demonstrated antitumor activity. Camptothecine
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D004277 DNA, Single-Stranded A single chain of deoxyribonucleotides that occurs in some bacteria and viruses. It usually exists as a covalently closed circle. Single-Stranded DNA,DNA, Single Stranded,Single Stranded DNA
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Y Pommier, and J Jenkins, and G Kohlhagen, and F Leteurtre
March 1995, Journal of medicinal chemistry,
Y Pommier, and J Jenkins, and G Kohlhagen, and F Leteurtre
January 2003, Current topics in medicinal chemistry,
Y Pommier, and J Jenkins, and G Kohlhagen, and F Leteurtre
May 1995, Biochemistry,
Y Pommier, and J Jenkins, and G Kohlhagen, and F Leteurtre
November 1989, Nucleic acids research,
Y Pommier, and J Jenkins, and G Kohlhagen, and F Leteurtre
December 1992, Journal of molecular biology,
Y Pommier, and J Jenkins, and G Kohlhagen, and F Leteurtre
February 1993, Nucleic acids research,
Y Pommier, and J Jenkins, and G Kohlhagen, and F Leteurtre
March 1995, The Journal of biological chemistry,
Y Pommier, and J Jenkins, and G Kohlhagen, and F Leteurtre
October 2015, Bioorganic & medicinal chemistry letters,
Y Pommier, and J Jenkins, and G Kohlhagen, and F Leteurtre
August 1998, Pharmacy world & science : PWS,
Y Pommier, and J Jenkins, and G Kohlhagen, and F Leteurtre
May 2009, Expert opinion on therapeutic patents,
Copied contents to your clipboard!