Modulation of GABAA receptors by tyrosine phosphorylation. 1995

S J Moss, and G H Gorrie, and A Amato, and T G Smart
MRC Laboratory of Molecular Cell Biology, University College London, UK.

gamma-Aminobutyric acid type-A (GABAA) receptors are the major sites of fast synaptic inhibition in the brain. They are presumed to be pentameric heteroligomers assembled from four classes of subunits with multiple members: alpha (1-6), beta (1-3), gamma (1-3) and delta (1). Here, GABAA receptors consisting of alpha 1, beta 1 and gamma 2L subunits, coexpressed in mammalian cells with the tyrosine kinase vSRC (the transforming gene product of the Rous sarcoma virus), were phosphorylated on tyrosine residues within the gamma 2L and beta 1 subunits. Tyrosine phosphorylation enhanced the whole-cell current induced by GABA. Site-specific mutagenesis of two tyrosine residues within the predicted intracellular domain of the gamma 2L subunit abolished tyrosine phosphorylation of this subunit and eliminated receptor modulation. A similar modulation of GABAA receptor function was observed in primary neuronal cultures. As GABAA receptors are critical in mediating fast synaptic inhibition, such a regulation by tyrosine kinases may therefore have profound effects on the control of neuronal excitation.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011963 Receptors, GABA-A Cell surface proteins which bind GAMMA-AMINOBUTYRIC ACID and contain an integral membrane chloride channel. Each receptor is assembled as a pentamer from a pool of at least 19 different possible subunits. The receptors belong to a superfamily that share a common CYSTEINE loop. Benzodiazepine-Gaba Receptors,GABA-A Receptors,Receptors, Benzodiazepine,Receptors, Benzodiazepine-GABA,Receptors, Diazepam,Receptors, GABA-Benzodiazepine,Receptors, Muscimol,Benzodiazepine Receptor,Benzodiazepine Receptors,Benzodiazepine-GABA Receptor,Diazepam Receptor,Diazepam Receptors,GABA(A) Receptor,GABA-A Receptor,GABA-A Receptor alpha Subunit,GABA-A Receptor beta Subunit,GABA-A Receptor delta Subunit,GABA-A Receptor epsilon Subunit,GABA-A Receptor gamma Subunit,GABA-A Receptor rho Subunit,GABA-Benzodiazepine Receptor,GABA-Benzodiazepine Receptors,Muscimol Receptor,Muscimol Receptors,delta Subunit, GABA-A Receptor,epsilon Subunit, GABA-A Receptor,gamma-Aminobutyric Acid Subtype A Receptors,Benzodiazepine GABA Receptor,Benzodiazepine Gaba Receptors,GABA A Receptor,GABA A Receptor alpha Subunit,GABA A Receptor beta Subunit,GABA A Receptor delta Subunit,GABA A Receptor epsilon Subunit,GABA A Receptor gamma Subunit,GABA A Receptor rho Subunit,GABA A Receptors,GABA Benzodiazepine Receptor,GABA Benzodiazepine Receptors,Receptor, Benzodiazepine,Receptor, Benzodiazepine-GABA,Receptor, Diazepam,Receptor, GABA-A,Receptor, GABA-Benzodiazepine,Receptor, Muscimol,Receptors, Benzodiazepine GABA,Receptors, GABA A,Receptors, GABA Benzodiazepine,delta Subunit, GABA A Receptor,epsilon Subunit, GABA A Receptor,gamma Aminobutyric Acid Subtype A Receptors
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D014162 Transfection The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES. Transfections
D014443 Tyrosine A non-essential amino acid. In animals it is synthesized from PHENYLALANINE. It is also the precursor of EPINEPHRINE; THYROID HORMONES; and melanin. L-Tyrosine,Tyrosine, L-isomer,para-Tyrosine,L Tyrosine,Tyrosine, L isomer,para Tyrosine

Related Publications

S J Moss, and G H Gorrie, and A Amato, and T G Smart
July 1995, Brain research. Molecular brain research,
S J Moss, and G H Gorrie, and A Amato, and T G Smart
July 1997, The Journal of neuroscience : the official journal of the Society for Neuroscience,
S J Moss, and G H Gorrie, and A Amato, and T G Smart
July 1992, Science (New York, N.Y.),
S J Moss, and G H Gorrie, and A Amato, and T G Smart
August 1998, Journal of neurophysiology,
S J Moss, and G H Gorrie, and A Amato, and T G Smart
January 1995, Wiener klinische Wochenschrift,
S J Moss, and G H Gorrie, and A Amato, and T G Smart
September 2003, Progress in neurobiology,
S J Moss, and G H Gorrie, and A Amato, and T G Smart
August 2021, Current opinion in pharmacology,
S J Moss, and G H Gorrie, and A Amato, and T G Smart
January 2014, Molecular brain,
S J Moss, and G H Gorrie, and A Amato, and T G Smart
January 1996, Neuropharmacology,
S J Moss, and G H Gorrie, and A Amato, and T G Smart
January 1992, European journal of pharmacology,
Copied contents to your clipboard!