Nitrogen mustard inhibits transcription and translation in a cell free system. 1995

A Masta, and P J Gray, and D R Phillips
School of Biochemistry, La Trobe University, Bundoora, Australia.

Nitrogen mustard and its derivatives such as cyclophosphamide, chlorambucil and melphalan are widely used anti-cancer agents, despite their non-specific reaction mechanism. In this study, the effect of alkylation by nitrogen mustard of DNA and RNA (coding for a single protein) was investigated using both a translation system and a coupled transcription/translation system. When alkylated DNA was used as the template for coupled transcription and translation, a single translation product corresponding to the 62 kDa luciferase protein was synthesised. Production of the translated product encoded by this template was inhibited by mustard concentrations as low as 10 nM, and 50% inhibition occurred with 30 nM mustard. A primer extension assay employed to verify alkylation sites on the DNA revealed that all guanine residues on the DNA template are susceptible to alkylation by nitrogen mustard. Similarly, when alkylated RNA was used as the template for protein synthesis, the amount of the 62 kDa luciferase protein decreased with increasing mustard concentration and a range of truncated polypeptides was synthesised. Under these conditions 50% inhibition of translation occurred with approximately 300 nM mustard (i.e. approximately 10 times that required for similar inhibition using an alkylated DNA template). Furthermore, a gel mobility shift assay revealed that mustard alkylation of the RNA template results in the formation of a more stable retarded RNA complex. The functional activity of the luciferase protein decreased with alkylation of both the DNA and RNA templates, with a half-life of loss of activity of 1.1 h for DNA exposed to 50 nM mustard, and 0.5 h for RNA exposed to 50 microM mustard. The data presented support the notion that DNA is a critical molecule in the mode of action of mustards.

UI MeSH Term Description Entries
D008156 Luciferases Enzymes that oxidize certain LUMINESCENT AGENTS to emit light (PHYSICAL LUMINESCENCE). The luciferases from different organisms have evolved differently so have different structures and substrates. Luciferase
D008466 Mechlorethamine A biologic alkylating agent that exerts its cytotoxic effects by forming DNA ADDUCTS and DNA interstrand crosslinks, thereby inhibiting rapidly proliferating cells. The hydrochloride is an antineoplastic agent used to treat HODGKIN DISEASE and LYMPHOMA. Chlorethazine,Chlormethine,Mechlorethamine Oxide,Mustine,Nitrogen Mustard,Nitrogen Mustard N-Oxide,Bis(2-chloroethyl)methylamine,Caryolysine,Cloramin,Embichin,Mechlorethamine Hydrochloride,Mechlorethamine Hydrochloride N-Oxide,Mechlorethamine N-Oxide,Methylchlorethamine,Mitomen,Mustargen,NSC-10107,NSC-762,Nitrogranulogen,Nitromin,Hydrochloride N-Oxide, Mechlorethamine,Hydrochloride, Mechlorethamine,Mechlorethamine Hydrochloride N Oxide,Mechlorethamine N Oxide,N-Oxide, Mechlorethamine Hydrochloride,N-Oxide, Nitrogen Mustard,NSC 10107,NSC 762,NSC10107,NSC762,Nitrogen Mustard N Oxide
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011500 Protein Synthesis Inhibitors Compounds which inhibit the synthesis of proteins. They are usually ANTI-BACTERIAL AGENTS or toxins. Mechanism of the action of inhibition includes the interruption of peptide-chain elongation, the blocking the A site of ribosomes, the misreading of the genetic code or the prevention of the attachment of oligosaccharide side chains to glycoproteins. Protein Synthesis Antagonist,Protein Synthesis Antagonists,Protein Synthesis Inhibitor,Antagonist, Protein Synthesis,Antagonists, Protein Synthesis,Inhibitor, Protein Synthesis,Inhibitors, Protein Synthesis,Synthesis Antagonist, Protein,Synthesis Inhibitor, Protein
D002474 Cell-Free System A fractionated cell extract that maintains a biological function. A subcellular fraction isolated by ultracentrifugation or other separation techniques must first be isolated so that a process can be studied free from all of the complex side reactions that occur in a cell. The cell-free system is therefore widely used in cell biology. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p166) Cellfree System,Cell Free System,Cell-Free Systems,Cellfree Systems,System, Cell-Free,System, Cellfree,Systems, Cell-Free,Systems, Cellfree
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D000477 Alkylating Agents Highly reactive chemicals that introduce alkyl radicals into biologically active molecules and thereby prevent their proper functioning. Many are used as antineoplastic agents, but most are very toxic, with carcinogenic, mutagenic, teratogenic, and immunosuppressant actions. They have also been used as components in poison gases. Alkylating Agent,Alkylator,Alkylators,Agent, Alkylating,Agents, Alkylating
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D013698 Templates, Genetic Macromolecular molds for the synthesis of complementary macromolecules, as in DNA REPLICATION; GENETIC TRANSCRIPTION of DNA to RNA, and GENETIC TRANSLATION of RNA into POLYPEPTIDES. Genetic Template,Genetic Templates,Template, Genetic

Related Publications

A Masta, and P J Gray, and D R Phillips
January 1995, Methods in molecular biology (Clifton, N.J.),
A Masta, and P J Gray, and D R Phillips
August 1991, Journal of biochemistry,
A Masta, and P J Gray, and D R Phillips
October 1969, Chemico-biological interactions,
A Masta, and P J Gray, and D R Phillips
January 1967, University of Michigan Medical Center journal,
A Masta, and P J Gray, and D R Phillips
January 1976, Biulleten' eksperimental'noi biologii i meditsiny,
A Masta, and P J Gray, and D R Phillips
February 1981, Zhurnal mikrobiologii, epidemiologii i immunobiologii,
A Masta, and P J Gray, and D R Phillips
February 1992, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
A Masta, and P J Gray, and D R Phillips
January 1998, Methods in molecular biology (Clifton, N.J.),
A Masta, and P J Gray, and D R Phillips
January 1978, European journal of biochemistry,
Copied contents to your clipboard!