Effect of extracellular calcium on survival of human proximal tubular cells exposed to hypoxia. 1995

M A Turman, and C M Bates, and A Mathews, and S E Haun
Wexner Institute for Pediatric Research, Department of Pediatrics, Children's Hospital, Ohio State University, Columbus 43205, USA.

Removal of extracellular calcium has been demonstrated to improve membrane integrity of rodent myocytes, astrocytes, and renal tubular cells injured by hypoxia. In this study, the effect of extracellular calcium on long-term survival of cultured human proximal tubular epithelial cells (PTEC) subjected to hypoxia was evaluated. In addition, the effect of extracellular calcium on release of arachidonic acid metabolites (AAM) was assessed during and after hypoxia. To induce hypoxic injury, PTEC were incubated in an anaerobic chamber in glucose-free buffer (combined oxygen/glucose deprivation, COGD). Long-term survival was assessed by measuring lactate dehydrogenase (LDH) efflux during COGD and after an additional 24-h "recovery" period (in routine culture medium in 95% air/5% CO2). To determine if extracellular calcium influenced AAM release from membrane phospholipids, cells were preincubated with [3H]arachidonic acid and the release of AAM was measured during COGD and recovery. With this model system, PTEC exhibited minimal LDH efflux during < or = 12 h COGD, but LDH efflux increased to 73.9 +/- 4.7% by 24 h COGD. With 12-18 h of COGD, the extent of LDH efflux was greater during recovery than during COGD, indicating that, for human PTEC, the extent of membrane damage does not become fully evident by LDH efflux for hours after hypoxia. PTEC exposed to 24 h of COGD in the absence of extracellular calcium exhibited strikingly less LDH efflux during COGD than cells incubated in the presence of extracellular calcium, suggesting that extracellular calcium contributes to membrane damage during COGD. However, upon reexposure of PTEC to extracellular calcium, LDH efflux rapidly increased to control levels. Furthermore, despite allowing cells to recover in oxygen or oxygen and glucose before exposure to calcium-containing medium, a rapid increase in LDH efflux could not be avoided. These results suggest that COGD induces an irreversible injury that ultimately leads to loss of membrane integrity whether or not extracellular calcium is present; however, extracellular calcium accelerates the loss of membrane integrity caused by hypoxia. Extracellular calcium did not alter AAM release, indicating that the effect of extracellular calcium on membrane damage (as indicated by LDH efflux) was not mediated by an increased activity of phospholipases (such as phospholipase A2) that are involved in the release of AAM.

UI MeSH Term Description Entries
D007687 Kidney Tubules, Proximal The renal tubule portion that extends from the BOWMAN CAPSULE in the KIDNEY CORTEX into the KIDNEY MEDULLA. The proximal tubule consists of a convoluted proximal segment in the cortex, and a distal straight segment descending into the medulla where it forms the U-shaped LOOP OF HENLE. Proximal Kidney Tubule,Proximal Renal Tubule,Kidney Tubule, Proximal,Proximal Kidney Tubules,Proximal Renal Tubules,Renal Tubule, Proximal,Renal Tubules, Proximal,Tubule, Proximal Kidney,Tubule, Proximal Renal,Tubules, Proximal Kidney,Tubules, Proximal Renal
D007770 L-Lactate Dehydrogenase A tetrameric enzyme that, along with the coenzyme NAD+, catalyzes the interconversion of LACTATE and PYRUVATE. In vertebrates, genes for three different subunits (LDH-A, LDH-B and LDH-C) exist. Lactate Dehydrogenase,Dehydrogenase, L-Lactate,Dehydrogenase, Lactate,L Lactate Dehydrogenase
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D015687 Cell Hypoxia A condition of decreased oxygen content at the cellular level. Anoxia, Cellular,Cell Anoxia,Hypoxia, Cellular,Anoxia, Cell,Anoxias, Cell,Anoxias, Cellular,Cell Anoxias,Cell Hypoxias,Cellular Anoxia,Cellular Anoxias,Cellular Hypoxia,Cellular Hypoxias,Hypoxia, Cell,Hypoxias, Cell,Hypoxias, Cellular
D016718 Arachidonic Acid An unsaturated, essential fatty acid. It is found in animal and human fat as well as in the liver, brain, and glandular organs, and is a constituent of animal phosphatides. It is formed by the synthesis from dietary linoleic acid and is a precursor in the biosynthesis of prostaglandins, thromboxanes, and leukotrienes. (all-Z)-5,8,11,14-Eicosatetraenoic acid,Arachidonic Acid, (all-Z)-Isomer, 1-(14)C-Labeled,Arachidonic Acid, (all-Z)-isomer, 3H-Labeled,Arachidonic Acid, Ammonium Salt, (all-Z)-Isomer,Arachidonic Acid, Cerium Salt, (all-Z)-Isomer,Arachidonic Acid, Cesium Salt, (all-Z)-Isomer,Arachidonic Acid, Lithium Salt, (all-Z)-Isomer,Arachidonic Acid, Potassium Salt, (all-Z)-Isomer,Arachidonic Acid, Sodium Salt,Arachidonic Acid, Sodium Salt, (all-Z)-Isomer,Arachidonic Acid, Zinc Salt, (all-Z)-Isomer,Sodium Arachidonate,Vitamin F,Arachidonate, Sodium

Related Publications

M A Turman, and C M Bates, and A Mathews, and S E Haun
July 2008, Proteomics. Clinical applications,
M A Turman, and C M Bates, and A Mathews, and S E Haun
January 1986, Toxicologic pathology,
M A Turman, and C M Bates, and A Mathews, and S E Haun
November 2019, Scientific reports,
M A Turman, and C M Bates, and A Mathews, and S E Haun
August 2005, Kidney international,
M A Turman, and C M Bates, and A Mathews, and S E Haun
July 2017, International urology and nephrology,
M A Turman, and C M Bates, and A Mathews, and S E Haun
December 2008, The Journal of pharmacology and experimental therapeutics,
M A Turman, and C M Bates, and A Mathews, and S E Haun
May 2015, Molecular medicine reports,
M A Turman, and C M Bates, and A Mathews, and S E Haun
December 2006, Clinical science (London, England : 1979),
Copied contents to your clipboard!