Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors. 1995

D S McGehee, and M J Heath, and S Gelber, and P Devay, and L W Role
Department of Cell Biology and Anatomy, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA.

The behavioral and cognitive effects of nicotine suggest that nicotinic acetylcholine receptors (nAChRs) participate in central nervous system (CNS) function. Although nAChR subunit messenger RNA (mRNA) and nicotine binding sites are common in the brain, there is little evidence for synapses mediated by nAChRs in the CNS. To test whether, CNS nAChRs might modify rather than mediate transmission, the regulation of excitatory synaptic transmission by these receptors was examined. Nanomolar concentrations of nicotine enhanced both glutamatergic and cholinergic synaptic transmission by activation of presynaptic nAChRs that increased presynaptic [Ca2]i. Pharmacological and subunit deletion experiments reveal that these presynaptic nAChRs include the alpha 7 subunit. These findings reveal that CNS nAChRs enhance fast excitatory transmission, providing a likely mechanism for the complex behavioral effects of nicotine.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009538 Nicotine Nicotine is highly toxic alkaloid. It is the prototypical agonist at nicotinic cholinergic receptors where it dramatically stimulates neurons and ultimately blocks synaptic transmission. Nicotine is also important medically because of its presence in tobacco smoke. Nicotine Bitartrate,Nicotine Tartrate
D011978 Receptors, Nicotinic One of the two major classes of cholinergic receptors. Nicotinic receptors were originally distinguished by their preference for NICOTINE over MUSCARINE. They are generally divided into muscle-type and neuronal-type (previously ganglionic) based on pharmacology, and subunit composition of the receptors. Nicotinic Acetylcholine Receptors,Nicotinic Receptors,Nicotinic Acetylcholine Receptor,Nicotinic Receptor,Acetylcholine Receptor, Nicotinic,Acetylcholine Receptors, Nicotinic,Receptor, Nicotinic,Receptor, Nicotinic Acetylcholine,Receptors, Nicotinic Acetylcholine
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002038 Bungarotoxins Neurotoxic proteins from the venom of the banded or Formosan krait (Bungarus multicinctus, an elapid snake). alpha-Bungarotoxin blocks nicotinic acetylcholine receptors and has been used to isolate and study them; beta- and gamma-bungarotoxins act presynaptically causing acetylcholine release and depletion. Both alpha and beta forms have been characterized, the alpha being similar to the large, long or Type II neurotoxins from other elapid venoms. alpha-Bungarotoxin,beta-Bungarotoxin,kappa-Bungarotoxin,alpha Bungarotoxin,beta Bungarotoxin,kappa Bungarotoxin
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D005728 Ganglia, Sympathetic Ganglia of the sympathetic nervous system including the paravertebral and the prevertebral ganglia. Among these are the sympathetic chain ganglia, the superior, middle, and inferior cervical ganglia, and the aorticorenal, celiac, and stellate ganglia. Celiac Ganglia,Sympathetic Ganglia,Celiac Ganglion,Ganglion, Sympathetic,Ganglia, Celiac,Ganglion, Celiac,Sympathetic Ganglion
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

D S McGehee, and M J Heath, and S Gelber, and P Devay, and L W Role
September 1994, Journal of neurophysiology,
D S McGehee, and M J Heath, and S Gelber, and P Devay, and L W Role
September 1997, Neuroscience,
D S McGehee, and M J Heath, and S Gelber, and P Devay, and L W Role
July 1999, The Journal of neuroscience : the official journal of the Society for Neuroscience,
D S McGehee, and M J Heath, and S Gelber, and P Devay, and L W Role
February 2011, The Journal of physiology,
D S McGehee, and M J Heath, and S Gelber, and P Devay, and L W Role
September 1995, Brain research,
D S McGehee, and M J Heath, and S Gelber, and P Devay, and L W Role
December 2003, Sheng li xue bao : [Acta physiologica Sinica],
D S McGehee, and M J Heath, and S Gelber, and P Devay, and L W Role
September 1995, Neuroscience letters,
D S McGehee, and M J Heath, and S Gelber, and P Devay, and L W Role
January 1998, Neuron,
D S McGehee, and M J Heath, and S Gelber, and P Devay, and L W Role
November 2001, The Journal of neuroscience : the official journal of the Society for Neuroscience,
D S McGehee, and M J Heath, and S Gelber, and P Devay, and L W Role
January 2002, Neuroscience,
Copied contents to your clipboard!