Identification of ractopamine hydrochloride metabolites excreted in rat bile. 1995

D J Smith, and J M Giddings, and V J Feil, and G D Paulson
US Department of Agriculture, Agriculture Research Service, Biosciences Research Laboratory, Fargo, ND 58105, USA.

1. Rats dosed orally with 2.85 +/- 0.30 mg [14C]ractopamine HC1 [(1R*, 3R*), (1R*, 3S*)-4-hydroxy-alpha-[[[3-(4-hydroxyphenyl)- 1-methylpropyl]-amino]-methyl]([U-14C]benzenemethanol)hydrochloride] containing 1.44 +/- 0.15 microCi radioactivity excreted 58 +/- 7% of the administered radioactivity in the bile within 24 h. Absorption and excretion of radioactivity was rapid as 55% of the administered radiocarbon was excreted into the bile during the first 8-h collection period. 2. Radioactivity excreted in rat bile was partitioned by XAD-2 column chromatography and reverse-phase hplc into at least seven different crude metabolite fractions; metabolites representing approximately 76% of the biliary radioactivity were isolated and identified from four of the crude metabolite fractions. 3. Approximately 46% of the biliary radioactivity was identified as a sulphate-ester, glucuronic acid diconjugate of ractopamine. Identification was based on 1H-nmr and negative-ion FAB-ms spectroscopy. Enzymatic and chemical hydrolysis of the sulphate-ester followed by co-chromatography of the hydrolysis products with synthetic ractopamine mono-glucuronides, established the site of sulphation at the C-10' phenol (phenol attached to carbinol) and glucuronidation at the C-10 phenol (phenol attached to methylpropyl amine) of ractopamine. 4. A metabolite representing approximately 6% of the biliary radioactivity was identified as a ractopamine mono-sulphate conjugate by using mass spectral and 1H-nmr techniques. Sulphate was conjugated at the C-10' phenol of ractopamine and was not stereospecific. 5. Approximately 25% of the biliary radioactivity was identified as ractopamine mono-glucuronides. The major site of glucuronidation was at the C-10 phenol, but ractopamine glucuronidated at the C'-10 phenol was also present.

UI MeSH Term Description Entries
D008297 Male Males
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D010627 Phenethylamines A group of compounds that are derivatives of beta- aminoethylbenzene which is structurally and pharmacologically related to amphetamine. (From Merck Index, 11th ed) Phenylethylamines
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D005965 Glucuronates Derivatives of GLUCURONIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that include the 6-carboxy glucose structure. Glucosiduronates,Glucuronic Acids,Acids, Glucuronic
D006868 Hydrolysis The process of cleaving a chemical compound by the addition of a molecule of water.
D000318 Adrenergic beta-Agonists Drugs that selectively bind to and activate beta-adrenergic receptors. Adrenergic beta-Receptor Agonists,beta-Adrenergic Agonists,beta-Adrenergic Receptor Agonists,Adrenergic beta-Agonist,Adrenergic beta-Receptor Agonist,Betamimetics,Receptor Agonists, beta-Adrenergic,Receptors Agonists, Adrenergic beta,beta-Adrenergic Agonist,beta-Adrenergic Receptor Agonist,Adrenergic beta Agonist,Adrenergic beta Agonists,Adrenergic beta Receptor Agonist,Adrenergic beta Receptor Agonists,Agonist, Adrenergic beta-Receptor,Agonist, beta-Adrenergic,Agonist, beta-Adrenergic Receptor,Agonists, Adrenergic beta-Receptor,Agonists, beta-Adrenergic,Agonists, beta-Adrenergic Receptor,Receptor Agonist, beta-Adrenergic,Receptor Agonists, beta Adrenergic,beta Adrenergic Agonist,beta Adrenergic Agonists,beta Adrenergic Receptor Agonist,beta Adrenergic Receptor Agonists,beta-Agonist, Adrenergic,beta-Agonists, Adrenergic,beta-Receptor Agonist, Adrenergic,beta-Receptor Agonists, Adrenergic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001646 Bile An emulsifying agent produced in the LIVER and secreted into the DUODENUM. Its composition includes BILE ACIDS AND SALTS; CHOLESTEROL; and ELECTROLYTES. It aids DIGESTION of fats in the duodenum. Biliary Sludge,Sludge, Biliary
D001711 Biotransformation The chemical alteration of an exogenous substance by or in a biological system. The alteration may inactivate the compound or it may result in the production of an active metabolite of an inactive parent compound. The alterations may be divided into METABOLIC DETOXICATION, PHASE I and METABOLIC DETOXICATION, PHASE II.

Related Publications

D J Smith, and J M Giddings, and V J Feil, and G D Paulson
December 1979, Ceskoslovenska farmacie,
D J Smith, and J M Giddings, and V J Feil, and G D Paulson
January 1986, Drug metabolism and disposition: the biological fate of chemicals,
D J Smith, and J M Giddings, and V J Feil, and G D Paulson
January 1982, European journal of drug metabolism and pharmacokinetics,
D J Smith, and J M Giddings, and V J Feil, and G D Paulson
April 2000, Xenobiotica; the fate of foreign compounds in biological systems,
D J Smith, and J M Giddings, and V J Feil, and G D Paulson
January 1982, Drug metabolism and disposition: the biological fate of chemicals,
D J Smith, and J M Giddings, and V J Feil, and G D Paulson
March 1968, Comptes rendus hebdomadaires des seances de l'Academie des sciences. Serie D: Sciences naturelles,
D J Smith, and J M Giddings, and V J Feil, and G D Paulson
November 1969, European journal of pharmacology,
D J Smith, and J M Giddings, and V J Feil, and G D Paulson
March 1970, Bulletin de la Societe de chimie biologique,
D J Smith, and J M Giddings, and V J Feil, and G D Paulson
July 1975, Xenobiotica; the fate of foreign compounds in biological systems,
D J Smith, and J M Giddings, and V J Feil, and G D Paulson
April 1981, Indian journal of experimental biology,
Copied contents to your clipboard!