Redistribution of aquaporin-2 water channels induced by vasopressin in rat kidney inner medullary collecting duct. 1995

D Marples, and M A Knepper, and E I Christensen, and S Nielsen
Department of Cell Biology, University of Aarhus, Denmark.

Aquaporin-2 (AQP2) is the predominant vasopressin-regulated water channel of the renal collecting duct. We tested whether vasopressin induces translocation of AQP2 from intracellular vesicles into the apical plasma membrane. AQP2 was quantitated in plasma membrane and intracellular vesicle fractions prepared from the inner medulla of one kidney from each rat before or 20 min after intravenous 1-desamino-8-D-arginine vasopressin (DDAVP) treatment, using immunoblotting and densitometry. Contralateral kidneys were prepared for immunofluorescence and immunoelectron microscopy. Immunoblotting revealed that, compared with untreated controls, DDAVP treatment significantly increased the fraction of AQP2 protein associated with the plasma membrane fraction relative to intracellular vesicles. This increase averaged 2.0-fold in untreated rats and 2.9-fold in rats water loaded for 12 h. Water loading, presumably by suppressing circulating vasopressin levels, decreased the fraction of AQP2 associated with the plasma membrane by 55%, suggesting retrieval of AQP2 from the plasma membrane. In rats sequentially thirsted for 48 h to increase expression and then water loaded for 72 h to minimize plasma membrane labeling, DDAVP caused a 12-fold increase in the plasma membrane to intracellular vesicle labeling ratio. The accentuation of the DDAVP response seen after water loading is consistent with the observed increase in the fraction of AQP2 in the intracellular pool available for insertion. Immunofluorescence confirmed a marked DDAVP-induced redistribution of AQP2 from intracellular to plasma membrane domains. Furthermore, quantitative immunoelectron microscopy demonstrated a 3.4-fold increase in apical plasma membrane to intracellular vesicle labeling ratio. These results provide a direct in vivo demonstration of vasopressin-induced translocation of AQP2 into the apical plasma membrane.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D007679 Kidney Medulla The internal portion of the kidney, consisting of striated conical masses, the renal pyramids, whose bases are adjacent to the cortex and whose apices form prominent papillae projecting into the lumen of the minor calyces. Kidney Papilla,Kidney Medullas,Kidney Papillas,Medulla, Kidney,Medullas, Kidney,Papilla, Kidney,Papillas, Kidney
D007685 Kidney Tubules, Collecting Straight tubes commencing in the radiate part of the kidney cortex where they receive the curved ends of the distal convoluted tubules. In the medulla the collecting tubules of each pyramid converge to join a central tube (duct of Bellini) which opens on the summit of the papilla. Kidney Collecting Ducts,Kidney Collecting Duct,Collecting Duct, Kidney,Collecting Ducts, Kidney
D008297 Male Males
D012076 Renal Agents Drugs used for their effects on the kidneys' regulation of body fluid composition and volume. The most commonly used are the diuretics. Also included are drugs used for their antidiuretic and uricosuric actions, for their effects on the kidneys' clearance of other drugs, and for diagnosis of renal function. Agents, Renal
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D003894 Deamino Arginine Vasopressin A synthetic analog of the pituitary hormone, ARGININE VASOPRESSIN. Its action is mediated by the VASOPRESSIN receptor V2. It has prolonged antidiuretic activity, but little pressor effects. It also modulates levels of circulating FACTOR VIII and VON WILLEBRAND FACTOR. Desmopressin,Vasopressin, Deamino Arginine,1-Deamino-8-D-arginine Vasopressin,1-Desamino-8-arginine Vasopressin,Adiuretin,Adiuretin SD,Apo-Desmopressin,DDAVP,Desmogalen,Desmopressin Acetate,Desmopressin Monoacetate,Desmopressin Monoacetate, Trihydrate,Desmopressine Ferring,Desmospray,Desmotabs,Minirin,Minurin,Nocutil,Octim,Octostim,Acetate, Desmopressin,Arginine Vasopressin, Deamino,Ferring, Desmopressine,Monoacetate, Desmopressin,Monoacetate, Trihydrate Desmopressin,Trihydrate Desmopressin Monoacetate,Vasopressin, 1-Deamino-8-D-arginine,Vasopressin, 1-Desamino-8-arginine
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein

Related Publications

D Marples, and M A Knepper, and E I Christensen, and S Nielsen
January 2017, Physiological reports,
D Marples, and M A Knepper, and E I Christensen, and S Nielsen
November 1998, The American journal of physiology,
D Marples, and M A Knepper, and E I Christensen, and S Nielsen
October 1992, The Journal of clinical investigation,
D Marples, and M A Knepper, and E I Christensen, and S Nielsen
February 2011, American journal of physiology. Renal physiology,
D Marples, and M A Knepper, and E I Christensen, and S Nielsen
March 2000, American journal of physiology. Renal physiology,
D Marples, and M A Knepper, and E I Christensen, and S Nielsen
September 1993, The American journal of physiology,
D Marples, and M A Knepper, and E I Christensen, and S Nielsen
September 1990, Cell and tissue kinetics,
D Marples, and M A Knepper, and E I Christensen, and S Nielsen
December 1991, Steroids,
D Marples, and M A Knepper, and E I Christensen, and S Nielsen
October 1988, The Journal of clinical investigation,
D Marples, and M A Knepper, and E I Christensen, and S Nielsen
March 1997, The Journal of clinical investigation,
Copied contents to your clipboard!