Inhibition of apoptosis by antioxidants in the human HL-60 leukemia cell line. 1995

S Verhaegen, and A J McGowan, and A R Brophy, and R S Fernandes, and T G Cotter
Department of Biochemistry, University College Cork, Ireland.

Cell death via apoptosis is an important event involved in a number of immunological processes. Recently, apoptosis has been associated with oxidative stress in a number of cell systems. Here we assessed the inhibitory capacity of different antioxidants on UV- and drug-induced apoptosis in the human leukemic cell line, HL-60. We found that the oxygen radical scavenger, BHA, the radioprotector cysteamine and the metal chelators, pyrrolidinedithiocarbamate (PDTC), diethyldithiocarbamate (DEDTC), and dimethyldithiocarbamate (DMDTC), were able to significantly inhibit nuclear fragmentation and reduce the formation of apoptotic bodies in UV-irradiated human leukemic cells. Both BHA and PDTC were found to reduce DNA fragmentation as assessed by in situ DNA nick-end labelling and quantification thereof using fluorescence flow cytometry. In addition to inhibiting UV-induced apoptosis, PDTC was also capable of reducing the amount of apoptosis induced by a range of cytotoxic drugs, such as actinomycin-D, camptothecin, etoposide, and melphalan, whereas BHA and cysteamine were not as effective in these cases after more than four hours in culture when compared to PDTC. To further elucidate the working mechanism of PDTC, we have looked at the effect of PDTC on DNA fragmentation in isolated nuclei, under conditions that promote activation of endogenous endonuclease involved in apoptosis. In contrast to ZnCl2, a potent inhibitor of endonuclease activity, PDTC was unable to inhibit DNA-ladder formation in this assay. Taken together, these results indicate that oxygen radicals may have a central role to play in the induction of apoptosis and that dithiocarbamates can serve as potent inhibitors of apoptosis induced by a wide variety of stimuli.

UI MeSH Term Description Entries
D011759 Pyrrolidines Compounds also known as tetrahydropyridines with general molecular formula (CH2)4NH. Tetrahydropyridine,Tetrahydropyridines
D002083 Butylated Hydroxyanisole Mixture of 2- and 3-tert-butyl-4-methoxyphenols that is used as an antioxidant in foods, cosmetics, and pharmaceuticals. Butylhydroxyanisole,(1,1-Dimethylethyl)-4-methoxyphenol,AMIF-72,BHA,Butyl Methoxyphenol,Embanox,Nipantiox 1-F,Tenox BHA,AMIF 72,AMIF72,Hydroxyanisole, Butylated,Methoxyphenol, Butyl,Nipantiox 1 F,Nipantiox 1F
D003543 Cysteamine A mercaptoethylamine compound that is endogenously derived from the COENZYME A degradative pathway. The fact that cysteamine is readily transported into LYSOSOMES where it reacts with CYSTINE to form cysteine-cysteamine disulfide and CYSTEINE has led to its use in CYSTINE DEPLETING AGENTS for the treatment of CYSTINOSIS. Cysteinamine,Mercaptamine,2-Aminoethanethiol,Becaptan,Cystagon,Cysteamine Bitartrate,Cysteamine Dihydrochloride,Cysteamine Hydrobromide,Cysteamine Hydrochloride,Cysteamine Maleate (1:1),Cysteamine Tartrate,Cysteamine Tartrate (1:1),Cysteamine Tosylate,Cysteamine, 35S-Labeled,Mercamine,Mercaptoethylamine,beta-Mercaptoethylamine,2 Aminoethanethiol,35S-Labeled Cysteamine,Bitartrate, Cysteamine,Cysteamine, 35S Labeled,Dihydrochloride, Cysteamine,Hydrobromide, Cysteamine,Hydrochloride, Cysteamine,Tartrate, Cysteamine,Tosylate, Cysteamine,beta Mercaptoethylamine
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004720 Endonucleases Enzymes that catalyze the hydrolysis of the internal bonds and thereby the formation of polynucleotides or oligonucleotides from ribo- or deoxyribonucleotide chains. EC 3.1.-. Endonuclease
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006861 Hydrogen Peroxide A strong oxidizing agent used in aqueous solution as a ripening agent, bleach, and topical anti-infective. It is relatively unstable and solutions deteriorate over time unless stabilized by the addition of acetanilide or similar organic materials. Hydrogen Peroxide (H2O2),Hydroperoxide,Oxydol,Perhydrol,Superoxol,Peroxide, Hydrogen
D000975 Antioxidants Naturally occurring or synthetic substances that inhibit or retard oxidation reactions. They counteract the damaging effects of oxidation in animal tissues. Anti-Oxidant,Antioxidant,Antioxidant Activity,Endogenous Antioxidant,Endogenous Antioxidants,Anti-Oxidant Effect,Anti-Oxidant Effects,Anti-Oxidants,Antioxidant Effect,Antioxidant Effects,Activity, Antioxidant,Anti Oxidant,Anti Oxidant Effect,Anti Oxidant Effects,Anti Oxidants,Antioxidant, Endogenous,Antioxidants, Endogenous
D013859 Thiocarbamates Carbamates in which the -CO- group has been replaced by a -CS- group. Thiocarbamate

Related Publications

S Verhaegen, and A J McGowan, and A R Brophy, and R S Fernandes, and T G Cotter
September 1999, The Tohoku journal of experimental medicine,
S Verhaegen, and A J McGowan, and A R Brophy, and R S Fernandes, and T G Cotter
April 2005, Planta medica,
S Verhaegen, and A J McGowan, and A R Brophy, and R S Fernandes, and T G Cotter
March 1997, Zhonghua zhong liu za zhi [Chinese journal of oncology],
S Verhaegen, and A J McGowan, and A R Brophy, and R S Fernandes, and T G Cotter
April 1996, Biochemical and biophysical research communications,
S Verhaegen, and A J McGowan, and A R Brophy, and R S Fernandes, and T G Cotter
June 1998, Yao xue xue bao = Acta pharmaceutica Sinica,
S Verhaegen, and A J McGowan, and A R Brophy, and R S Fernandes, and T G Cotter
January 2022, Journal of oncology,
S Verhaegen, and A J McGowan, and A R Brophy, and R S Fernandes, and T G Cotter
December 1997, Cancer letters,
S Verhaegen, and A J McGowan, and A R Brophy, and R S Fernandes, and T G Cotter
March 2001, Zhongguo shi yan xue ye xue za zhi,
S Verhaegen, and A J McGowan, and A R Brophy, and R S Fernandes, and T G Cotter
September 2010, Frontiers of medicine in China,
S Verhaegen, and A J McGowan, and A R Brophy, and R S Fernandes, and T G Cotter
May 1998, Zhonghua xue ye xue za zhi = Zhonghua xueyexue zazhi,
Copied contents to your clipboard!