Macrolide antibacterials. Drug interactions of clinical significance. 1995

N A von Rosensteil, and D Adam
University Children's Hospital, Munich, Germany.

Macrolide antibiotics can interact adversely with commonly used drugs, usually by altering metabolism due to complex formation and inhibition of cytochrome P-450 IIIA4 (CYP3A4) in the liver and enterocytes. In addition, pharmacokinetic drug interactions with macrolides can result from their antibiotic effect on microorganisms of the enteric flora, and through enhanced gastric emptying due to a motilin-like effect. Macrolides may be classified into 3 different groups according to their affinity for CYP3A4, and thus their propensity to cause pharmacokinetic drug interactions. Troleandomycin, erythromycin and its prodrugs decrease drug metabolism and may produce drug interactions (group 1). Others, including clarithromycin, flurithromycin, midecamycin, midecamycin acetate (miocamycin; ponsinomycin), josamycin and roxithromycin (group 2) rarely cause interactions. Azithromycin, dirithromycin, rikamycin and spiramycin (group 3) do not inactivate CYP3A4 and do not engender these adverse effects. Drug interactions with carbamazepine, cyclosporin, terfenadine, astemizole and theophylline represent the most frequently encountered interactions with macrolide antibiotics. If the combination of a macrolide and one of these compounds cannot be avoided, serum concentrations of concurrently administered drugs should be monitored and patients observed for signs of toxicity. Rare interactions and those of dubious clinical importance are those with alfentanil and sufentanil, antacids and cimetidine, oral anticoagulants, bromocriptine, clozapine, oral contraceptive steroids, digoxin, disopyramide, ergot alkaloids, felodipine, glibenclamide (glyburide), levodopa/carbidopa, lovastatin, methylprednisolone, phenazone (antipyrine), phenytoin, rifabutin and rifampicin (rifampin), triazolam and midazolam, valproic acid (sodium valproate) and zidovudine.

UI MeSH Term Description Entries
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D004347 Drug Interactions The action of a drug that may affect the activity, metabolism, or toxicity of another drug. Drug Interaction,Interaction, Drug,Interactions, Drug
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial
D018942 Macrolides A group of often glycosylated macrocyclic compounds formed by chain extension of multiple PROPIONATES cyclized into a large (typically 12, 14, or 16)-membered lactone. Macrolides belong to the POLYKETIDES class of natural products, and many members exhibit ANTIBIOTIC properties. Macrolide
D065607 Cytochrome P-450 Enzyme Inhibitors Drugs and compounds which inhibit or antagonize the biosynthesis or actions of CYTOCHROME P-450 ENZYMES. Cytochrome P-450 Inhibitors,Cytochrome P-450 Monooxygenase Inhibitors,Cytochrome P-450 Oxygenase Inhibitors,Cytochrome P-450-Dependent Monooxygenase Inhibitors,P-450 Enzyme Inhibitors,P450 Enzyme Inhibitors,Cytochrome P 450 Dependent Monooxygenase Inhibitors,Cytochrome P 450 Enzyme Inhibitors,Cytochrome P 450 Inhibitors,Cytochrome P 450 Monooxygenase Inhibitors,Cytochrome P 450 Oxygenase Inhibitors,Enzyme Inhibitors, P-450,Enzyme Inhibitors, P450,Inhibitors, Cytochrome P-450,Inhibitors, P-450 Enzyme,Inhibitors, P450 Enzyme,P 450 Enzyme Inhibitors,P-450 Inhibitors, Cytochrome

Related Publications

N A von Rosensteil, and D Adam
January 1992, Drug safety,
N A von Rosensteil, and D Adam
November 1993, Drug safety,
N A von Rosensteil, and D Adam
November 1974, Clinical pharmacology and therapeutics,
N A von Rosensteil, and D Adam
May 2008, Medicina clinica,
N A von Rosensteil, and D Adam
April 2000, The Annals of pharmacotherapy,
N A von Rosensteil, and D Adam
November 2000, Drug safety,
N A von Rosensteil, and D Adam
September 1996, Drug safety,
N A von Rosensteil, and D Adam
January 1989, Srpski arhiv za celokupno lekarstvo,
N A von Rosensteil, and D Adam
January 1997, Pediatric nursing,
N A von Rosensteil, and D Adam
June 1985, The Journal of antimicrobial chemotherapy,
Copied contents to your clipboard!