Binding modes for substrate and a proposed transition-state analogue of protozoan nucleoside hydrolase. 1995

D W Parkin, and V L Schramm
Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA.

The transition-state structure for inosine-uridine nucleoside hydrolase (IU-nucleoside hydrolase) from Crithidia fasciculata is characterized by oxycarbonium character in the ribosyl and weak bonds to the departing hypoxanthine and incipient water nucleophile [Horenstein, B. A., Parkin, D. W., Estupiñán, B., & Schramm, V. L. (1991) Biochemistry 30, 10788-10795]. Inhibitors designed to resemble the transition state are slow-onset, tight-binding inhibitors with observed Km/Ki values up to 2 x 10(5) [Schramm, V. L., Horenstein, B. H., & Kline, P. C. (1994) J. Biol. Chem. 269, 18259-18262]. Although slow-onset, tight binding is consistent with transition-state stabilization, more direct evidence can be obtained by comparing the groups which interact with the substrate to provide binding and catalysis with those which interact with the putative transition-state inhibitor. The Km value for inosine binding to IU-nucleoside hydrolase is independent of pH over the range 5.6-10.5. Dependencies of Vmax and Vmax/Km on pH result in pH optima near 8.0. A single group with pK of 9.1 must be protonated for catalytic activity, and protonation of a second group with a pK of 7.1 results in loss of activity. 1-(S)-Phenyl-1,4-dideoxy-1,4-imino-D-ribitol (phenyliminoribitol) binds with an equilibrium Kd of 30 nM and has been proposed to be a transition-state inhibitor. The pH dependence for the competitive inhibition by phenyliminoribitol resembles the Vmax profile with the protonation of a single group, pK 7.5, required for inhibitor binding and the protonation of a subsequent group, pK 6.6, causing loss of binding.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007288 Inosine A purine nucleoside that has hypoxanthine linked by the N9 nitrogen to the C1 carbon of ribose. It is an intermediate in the degradation of purines and purine nucleosides to uric acid and in pathways of purine salvage. It also occurs in the anticodon of certain transfer RNA molecules. (Dorland, 28th ed)
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009699 N-Glycosyl Hydrolases A class of enzymes involved in the hydrolysis of the N-glycosidic bond of nitrogen-linked sugars. Glycoside Hydrolases, Nitrogen-linked,Hydrolases, N-Glycosyl,Nucleosidase,Nucleosidases,Nucleoside Hydrolase,Nitrogen-linked Glycoside Hydrolases,Nucleoside Hydrolases,Glycoside Hydrolases, Nitrogen linked,Hydrolase, Nucleoside,Hydrolases, N Glycosyl,Hydrolases, Nitrogen-linked Glycoside,Hydrolases, Nucleoside,N Glycosyl Hydrolases,Nitrogen linked Glycoside Hydrolases
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D001667 Binding, Competitive The interaction of two or more substrates or ligands with the same binding site. The displacement of one by the other is used in quantitative and selective affinity measurements. Competitive Binding
D012255 Ribitol A sugar alcohol formed by the reduction of ribose. Adonitol
D014529 Uridine A ribonucleoside in which RIBOSE is linked to URACIL. Allo-Uridine,Allouridine,Allo Uridine

Related Publications

D W Parkin, and V L Schramm
November 1999, Bioorganic & medicinal chemistry,
D W Parkin, and V L Schramm
December 2002, Journal of the American Chemical Society,
D W Parkin, and V L Schramm
June 2006, Journal of the American Chemical Society,
D W Parkin, and V L Schramm
February 2002, The Journal of biological chemistry,
Copied contents to your clipboard!