Spin-labeled psoralen probes for the study of DNA dynamics. 1995

H P Spielmann, and D Y Chi, and N G Hunt, and M P Klein, and J E Hearst
Structural Biology Division, Lawrence Berkeley Laboratory, University of California, Berkeley 94720, USA.

Six nitroxide spin-labeled psoralen derivative have been synthesized and evaluated as probes for structural and dynamic studies. Sequence specific photoaddition of these derivatives to DNA oligonucleotides resulted in site-specifically cross-linked and spin-labeled oligomers. Comparison of the general line shape features of the observed electron paramagnetic resonance (EPR) spectra of several duplexes ranging in size from 8 to 46 base pairs with simulated EPR spectra indicate that the nitroxide spin-label probe reports the global tumbling motion of the oligomers. While there is no apparent large amplitude motion of the psoralen other than the overall tumbling of the DNA on the time scales investigated, there are some indications of bending and other residual motions. The (A)BC excinuclease DNA repair system detects structural or dynamic features of the DNA that distinguish between damaged and undamaged DNA and are independent of the intrinsic structure of the lesion. NMR studies have shown that psoralen-cross-linked DNA has altered backbone dynamics and conformational populations in the immediate vicinity of the adduct [Emsley et al. (1993) J. Am. Chem. Soc. 115, 7765-7771; Spielmann et al. (1995) Proc. Natl. Acad. Sci. U.S.A. 92, 2345-2349]. We suggested that the signal for recognition of a lesion to be repaired is in the sugar--phosphate backbone and not in the damaged base(s).

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D010782 Photolysis Chemical bond cleavage reactions resulting from absorption of radiant energy. Photodegradation
D011564 Furocoumarins Polycyclic compounds consisting of a furan ring fused with coumarin. They commonly occur in PLANTS, especially UMBELLIFERAE and RUTACEAE, as well as PSORALEA. Furanocoumarin,Furanocoumarins,Furocoumarin,Psoralens,Angelicins
D003196 Computer Graphics The process of pictorial communication, between human and computers, in which the computer input and output have the form of charts, drawings, or other appropriate pictorial representation. Computer Graphic,Graphic, Computer,Graphics, Computer
D003432 Cross-Linking Reagents Reagents with two reactive groups, usually at opposite ends of the molecule, that are capable of reacting with and thereby forming bridges between side chains of amino acids in proteins; the locations of naturally reactive areas within proteins can thereby be identified; may also be used for other macromolecules, like glycoproteins, nucleic acids, or other. Bifunctional Reagent,Bifunctional Reagents,Cross Linking Reagent,Crosslinking Reagent,Cross Linking Reagents,Crosslinking Reagents,Linking Reagent, Cross,Linking Reagents, Cross,Reagent, Bifunctional,Reagent, Cross Linking,Reagent, Crosslinking,Reagents, Bifunctional,Reagents, Cross Linking,Reagents, Cross-Linking,Reagents, Crosslinking
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries

Related Publications

H P Spielmann, and D Y Chi, and N G Hunt, and M P Klein, and J E Hearst
March 2005, Journal of medicinal chemistry,
H P Spielmann, and D Y Chi, and N G Hunt, and M P Klein, and J E Hearst
January 1988, Methods in molecular biology (Clifton, N.J.),
H P Spielmann, and D Y Chi, and N G Hunt, and M P Klein, and J E Hearst
September 1972, Biochemical and biophysical research communications,
H P Spielmann, and D Y Chi, and N G Hunt, and M P Klein, and J E Hearst
March 1999, Nucleosides & nucleotides,
H P Spielmann, and D Y Chi, and N G Hunt, and M P Klein, and J E Hearst
April 2010, The journal of physical chemistry. B,
H P Spielmann, and D Y Chi, and N G Hunt, and M P Klein, and J E Hearst
April 1973, Chemistry and physics of lipids,
H P Spielmann, and D Y Chi, and N G Hunt, and M P Klein, and J E Hearst
July 1992, Nihon rinsho. Japanese journal of clinical medicine,
H P Spielmann, and D Y Chi, and N G Hunt, and M P Klein, and J E Hearst
January 1977, General pharmacology,
H P Spielmann, and D Y Chi, and N G Hunt, and M P Klein, and J E Hearst
November 1999, Journal of agricultural and food chemistry,
H P Spielmann, and D Y Chi, and N G Hunt, and M P Klein, and J E Hearst
July 2008, The journal of physical chemistry. B,
Copied contents to your clipboard!