Expression of biologically active human factor IX in human hematopoietic cells after retroviral vector-mediated gene transduction. 1995

Q L Hao, and P Malik, and R Salazar, and H Tang, and E M Gordon, and D B Kohn
Division of Research Immunology/Bone Marrow Transplantation, Childrens Hospital Los Angeles, CA, USA.

Gene therapy is a potential treatment for hemophilia, wherein cells transduced with a normal factor IX gene could provide a continuous in vivo source of circulating factor IX. In this study, we examined the potential use of hematopoietic cells as a target for factor IX gene therapy. Human myeloid leukemia cells (HL-60) were transduced by retroviral vectors carrying a normal human factor IX cDNA under control of either the Moloney murine leukemia virus long terminal repeat (MoMuLV LTR) (LIXSN), the SV40 promoter (LNSVIX), or a cytomegalovirus (CMV) promoter (LNCIX). Factor IX production was measured in the transduced cells both in the uninduced state and after induction of granulocytic differentiation [with dimethylsulfoxide (DMSO)] or monocytoid differentiation [with phorbol myristic acetate (PMA)]. Transcription of factor IX from the MoMuLV LTR was seen in all cells, with a two-fold increase upon differentiation. Induction with PMA led to an 8- to 15-fold increase in factor IX transcripts from an internal CMV promoter. No factor IX transcripts from the internal SV40 promoter were detected. Immunoreactive factor IX protein was identified by Western blot from induced HL-60 cells transduced by either LIXSN or LNCIX. Factor IX production by HL-60 cells transduced by LNCIX ranged from 38-93 ng/10(6) cells/24 hr following induction of monocytic differentiation. The factor IX antigen titer was directly related to factor IX coagulant titer (r = 0.98; p < 0.001). These data indicate that human myelomonocytic cells are capable of performing the necessary post-translational modifications to produce functional factor IX.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D003029 Coagulants Agents that cause clotting. Coagulant
D005164 Factor IX Storage-stable blood coagulation factor acting in the intrinsic pathway of blood coagulation. Its activated form, IXa, forms a complex with factor VIII and calcium on platelet factor 3 to activate factor X to Xa. Deficiency of factor IX results in HEMOPHILIA B (Christmas Disease). Autoprothrombin II,Christmas Factor,Coagulation Factor IX,Plasma Thromboplastin Component,Blood Coagulation Factor IX,Factor 9,Factor IX Complex,Factor IX Fraction,Factor Nine,Factor IX, Coagulation
D005822 Genetic Vectors DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition. Cloning Vectors,Shuttle Vectors,Vectors, Genetic,Cloning Vector,Genetic Vector,Shuttle Vector,Vector, Cloning,Vector, Genetic,Vector, Shuttle,Vectors, Cloning,Vectors, Shuttle
D006413 Hematopoietic System The blood-making organs and tissues, principally the bone marrow and lymph nodes. Hematopoietic Systems,System, Hematopoietic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012190 Retroviridae Family of RNA viruses that infects birds and mammals and encodes the enzyme reverse transcriptase. The family contains seven genera: DELTARETROVIRUS; LENTIVIRUS; RETROVIRUSES TYPE B, MAMMALIAN; ALPHARETROVIRUS; GAMMARETROVIRUS; RETROVIRUSES TYPE D; and SPUMAVIRUS. A key feature of retrovirus biology is the synthesis of a DNA copy of the genome which is integrated into cellular DNA. After integration it is sometimes not expressed but maintained in a latent state (PROVIRUSES). Leukemogenic Viruses,Leukoviruses,Oncornaviruses,Oncovirinae,Oncoviruses,Oncoviruses, Type C,RNA Tumor Viruses,Retroviruses,Type C Oncoviruses,C Oncovirus, Type,C Oncoviruses, Type,Leukemogenic Virus,Leukovirus,Oncornavirus,Oncovirus,Oncovirus, Type C,RNA Tumor Virus,Retrovirus,Tumor Virus, RNA,Tumor Viruses, RNA,Type C Oncovirus,Virus, Leukemogenic,Virus, RNA Tumor,Viruses, Leukemogenic,Viruses, RNA Tumor
D013755 Tetradecanoylphorbol Acetate A phorbol ester found in CROTON OIL with very effective tumor promoting activity. It stimulates the synthesis of both DNA and RNA. Phorbol Myristate Acetate,12-Myristoyl-13-acetylphorbol,12-O-Tetradecanoyl Phorbol 13-Acetate,Tetradecanoylphorbol Acetate, 4a alpha-Isomer,12 Myristoyl 13 acetylphorbol,12 O Tetradecanoyl Phorbol 13 Acetate,13-Acetate, 12-O-Tetradecanoyl Phorbol,Acetate, Phorbol Myristate,Acetate, Tetradecanoylphorbol,Myristate Acetate, Phorbol,Phorbol 13-Acetate, 12-O-Tetradecanoyl,Tetradecanoylphorbol Acetate, 4a alpha Isomer
D015152 Blotting, Northern Detection of RNA that has been electrophoretically separated and immobilized by blotting on nitrocellulose or other type of paper or nylon membrane followed by hybridization with labeled NUCLEIC ACID PROBES. Northern Blotting,Blot, Northern,Northern Blot,Blots, Northern,Blottings, Northern,Northern Blots,Northern Blottings
D018014 Gene Transfer Techniques The introduction of functional (usually cloned) GENES into cells. A variety of techniques and naturally occurring processes are used for the gene transfer such as cell hybridization, LIPOSOMES or microcell-mediated gene transfer, ELECTROPORATION, chromosome-mediated gene transfer, TRANSFECTION, and GENETIC TRANSDUCTION. Gene transfer may result in genetically transformed cells and individual organisms. Gene Delivery Systems,Gene Transfer Technique,Transgenesis,Delivery System, Gene,Delivery Systems, Gene,Gene Delivery System,Technique, Gene Transfer,Techniques, Gene Transfer,Transfer Technique, Gene,Transfer Techniques, Gene
D018922 HL-60 Cells A promyelocytic cell line derived from a patient with ACUTE PROMYELOCYTIC LEUKEMIA. HL-60 cells lack specific markers for LYMPHOID CELLS but express surface receptors for FC FRAGMENTS and COMPLEMENT SYSTEM PROTEINS. They also exhibit phagocytic activity and responsiveness to chemotactic stimuli. (From Hay et al., American Type Culture Collection, 7th ed, pp127-8) HL60 Cells,Cell, HL60,Cells, HL60,HL 60 Cells,HL-60 Cell,HL60 Cell

Related Publications

Q L Hao, and P Malik, and R Salazar, and H Tang, and E M Gordon, and D B Kohn
October 1999, Current opinion in molecular therapeutics,
Q L Hao, and P Malik, and R Salazar, and H Tang, and E M Gordon, and D B Kohn
November 1991, Bone marrow transplantation,
Q L Hao, and P Malik, and R Salazar, and H Tang, and E M Gordon, and D B Kohn
November 1985, Science (New York, N.Y.),
Q L Hao, and P Malik, and R Salazar, and H Tang, and E M Gordon, and D B Kohn
May 1993, The American journal of pediatric hematology/oncology,
Q L Hao, and P Malik, and R Salazar, and H Tang, and E M Gordon, and D B Kohn
March 2001, Leukemia & lymphoma,
Q L Hao, and P Malik, and R Salazar, and H Tang, and E M Gordon, and D B Kohn
May 2001, Leukemia & lymphoma,
Q L Hao, and P Malik, and R Salazar, and H Tang, and E M Gordon, and D B Kohn
December 2002, Zhonghua shi yan he lin chuang bing du xue za zhi = Zhonghua shiyan he linchuang bingduxue zazhi = Chinese journal of experimental and clinical virology,
Q L Hao, and P Malik, and R Salazar, and H Tang, and E M Gordon, and D B Kohn
September 1996, Human gene therapy,
Copied contents to your clipboard!