Role of the Plasmodium falciparum mature-parasite-infected erythrocyte surface antigen (MESA/PfEMP-2) in malarial infection of erythrocytes. 1995

C Magowan, and R L Coppel, and A O Lau, and M M Moronne, and G Tchernia, and N Mohandas
Life Sciences Division, Lawrence Berkeley Laboratory, Berkeley, CA, USA.

During intraerythrocytic growth of Plasmodium falciparum, several parasite proteins are transported from the parasite to the erythrocyte membrane, where they bind to membrane skeletal proteins. Mature-parasite-infected erythrocyte surface antigen (MESA) has previously been shown to associate with host erythrocyte membrane skeletal protein 4.1. Using a spontaneous mutant of P falciparum that has lost the ability to synthesize MESA and 4.1-deficient erythrocytes, we examined growth of MESA(+) and MESA(-) parasites in normal and 4.1-deficient erythrocytes. Viability of MESA(+) parasites was reduced in 4.1-deficient erythrocytes as compared with that for normal erythrocytes, but MESA(-) parasites grew equally well in 4.1-deficient and normal erythrocytes. Cytoadherence of MESA(+)- and MESA (-)-parasitized normal and 4.1-deficient erythrocytes to C32 melanoma cells was similar, indicating that neither protein 4.1 nor MESA plays a major role in cytoadherence of infected erythrocytes. Localization of MESA in normal and 4.1-deficient erythrocytes was examined by confocal microscopy. MESA was diffusely distributed in the cytosol of 4.1-deficient erythrocytes but was membrane-associated in normal erythrocytes. These findings suggest that MESA binding to protein 4.1 plays a major role in intraerythrocytic parasite viability.

UI MeSH Term Description Entries
D008545 Melanoma A malignant neoplasm derived from cells that are capable of forming melanin, which may occur in the skin of any part of the body, in the eye, or, rarely, in the mucous membranes of the genitalia, anus, oral cavity, or other sites. It occurs mostly in adults and may originate de novo or from a pigmented nevus or malignant lentigo. Melanomas frequently metastasize widely, and the regional lymph nodes, liver, lungs, and brain are likely to be involved. The incidence of malignant skin melanomas is rising rapidly in all parts of the world. (Stedman, 25th ed; from Rook et al., Textbook of Dermatology, 4th ed, p2445) Malignant Melanoma,Malignant Melanomas,Melanoma, Malignant,Melanomas,Melanomas, Malignant
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D009479 Neuropeptides Peptides released by NEURONS as intercellular messengers. Many neuropeptides are also hormones released by non-neuronal cells. Neuropeptide
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D010963 Plasmodium falciparum A species of protozoa that is the causal agent of falciparum malaria (MALARIA, FALCIPARUM). It is most prevalent in the tropics and subtropics. Plasmodium falciparums,falciparums, Plasmodium
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D003598 Cytoskeletal Proteins Major constituent of the cytoskeleton found in the cytoplasm of eukaryotic cells. They form a flexible framework for the cell, provide attachment points for organelles and formed bodies, and make communication between parts of the cell possible. Proteins, Cytoskeletal
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle

Related Publications

C Magowan, and R L Coppel, and A O Lau, and M M Moronne, and G Tchernia, and N Mohandas
January 1990, Molecular and biochemical parasitology,
C Magowan, and R L Coppel, and A O Lau, and M M Moronne, and G Tchernia, and N Mohandas
March 1999, Experimental parasitology,
C Magowan, and R L Coppel, and A O Lau, and M M Moronne, and G Tchernia, and N Mohandas
September 2003, Blood,
C Magowan, and R L Coppel, and A O Lau, and M M Moronne, and G Tchernia, and N Mohandas
December 2015, The American journal of tropical medicine and hygiene,
C Magowan, and R L Coppel, and A O Lau, and M M Moronne, and G Tchernia, and N Mohandas
June 1984, The Journal of experimental medicine,
C Magowan, and R L Coppel, and A O Lau, and M M Moronne, and G Tchernia, and N Mohandas
September 1986, Molecular and biochemical parasitology,
C Magowan, and R L Coppel, and A O Lau, and M M Moronne, and G Tchernia, and N Mohandas
September 1983, The American journal of tropical medicine and hygiene,
C Magowan, and R L Coppel, and A O Lau, and M M Moronne, and G Tchernia, and N Mohandas
August 1985, The Journal of experimental medicine,
C Magowan, and R L Coppel, and A O Lau, and M M Moronne, and G Tchernia, and N Mohandas
November 1987, The Journal of biological chemistry,
C Magowan, and R L Coppel, and A O Lau, and M M Moronne, and G Tchernia, and N Mohandas
December 2011, Seminars in cell & developmental biology,
Copied contents to your clipboard!