Effect of flt3 ligand on the ex vivo expansion of human CD34+ hematopoietic progenitor cells. 1995

H J McKenna, and P de Vries, and K Brasel, and S D Lyman, and D E Williams
Immunex Corp, Seattle, WA 98101, USA.

A ligand for the tyrosine kinase receptor flt3/flk-2, referred to here as flt3 ligand (flt3L), was recently cloned. The effect of flt3L on purified human CD34+ progenitor cells was examined. flt3 receptor (flt3R) was detected on the surface of human bone marrow cells that were enriched for CD34 expression. The effects of flt3L and the c-kit ligand Steel factor (SLF) on hematopoietic progenitors were compared in clonal colony assays. Both factors synergized with Pixy321 (interleukin-3 [IL-3]-granulocyte-macrophage colony-stimulating factor fusion protein) to induce granulocytic-monocytic (GM) and high proliferative potential (HPP) colonies and synergized with Pixy321 + erythropoietin (EPO) to induce multipotent granulocytic-erythroid-monocytic-megakaryocytic colonies. Although SLF had a potent effect on colony formation of erythroid restricted progenitor cells (burst-forming unit-erythroid), no effect by flt3L was observed. The addition of flt3L to irradiated long-term marrow cultures seeded with CD34+ cells augmented both total and progenitor cell production. Ex vivo expansion studies with isolated CD34+ bone marrow cells from normal donors showed that flt3L alone supported maintenance of both GM and HPP progenitors for 3 to 4 weeks in vitro. The addition of flt3L to a growth factor combination of IL-1 alpha + IL-3 + IL-6 + EPO resulted in a synergistic effect on progenitor cell expansion comparable to that observed with the addition of SLF to IL-1 alpha + IL-3 + IL-6 + EPO. These data show a function for flt3L in the regulation of both primitive multipotent and lineage-committed hematopoietic progenitor cells.

UI MeSH Term Description Entries
D007377 Interleukin-3 A multilineage cell growth factor secreted by LYMPHOCYTES; EPITHELIAL CELLS; and ASTROCYTES which stimulates clonal proliferation and differentiation of various types of blood and tissue cells. Burst-Promoting Factor, Erythrocyte,Colony-Stimulating Factor 2 Alpha,Colony-Stimulating Factor, Mast-Cell,Colony-Stimulating Factor, Multipotential,Erythrocyte Burst-Promoting Factor,IL-3,Mast-Cell Colony-Stimulating Factor,Multipotential Colony-Stimulating Factor,P-Cell Stimulating Factor,Eosinophil-Mast Cell Growth-Factor,Hematopoietin-2,Burst Promoting Factor, Erythrocyte,Colony Stimulating Factor, Mast Cell,Colony Stimulating Factor, Multipotential,Eosinophil Mast Cell Growth Factor,Erythrocyte Burst Promoting Factor,Hematopoietin 2,Interleukin 3,Multipotential Colony Stimulating Factor,P Cell Stimulating Factor
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D011518 Proto-Oncogene Proteins Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity. Cellular Proto-Oncogene Proteins,c-onc Proteins,Proto Oncogene Proteins, Cellular,Proto-Oncogene Products, Cellular,Cellular Proto Oncogene Proteins,Cellular Proto-Oncogene Products,Proto Oncogene Products, Cellular,Proto Oncogene Proteins,Proto-Oncogene Proteins, Cellular,c onc Proteins
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D001854 Bone Marrow Cells Cells contained in the bone marrow including fat cells (see ADIPOCYTES); STROMAL CELLS; MEGAKARYOCYTES; and the immediate precursors of most blood cells. Bone Marrow Cell,Cell, Bone Marrow,Cells, Bone Marrow,Marrow Cell, Bone,Marrow Cells, Bone
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D003114 Colony-Forming Units Assay A cytologic technique for measuring the functional capacity of stem cells by assaying their activity. Clonogenic Cell Assay,Stem Cell Assay,Clonogenic Cell Assays,Colony Forming Units Assays,Colony-Forming Units Assays,Stem Cell Assays,Assay, Clonogenic Cell,Assay, Colony-Forming Units,Assay, Stem Cell,Assays, Clonogenic Cell,Assays, Colony-Forming Units,Assays, Stem Cell,Colony Forming Units Assay
D004357 Drug Synergism The action of a drug in promoting or enhancing the effectiveness of another drug. Drug Potentiation,Drug Augmentation,Augmentation, Drug,Augmentations, Drug,Drug Augmentations,Drug Potentiations,Drug Synergisms,Potentiation, Drug,Potentiations, Drug,Synergism, Drug,Synergisms, Drug

Related Publications

H J McKenna, and P de Vries, and K Brasel, and S D Lyman, and D E Williams
September 1997, Blood,
H J McKenna, and P de Vries, and K Brasel, and S D Lyman, and D E Williams
November 1998, Biotechnology and bioengineering,
H J McKenna, and P de Vries, and K Brasel, and S D Lyman, and D E Williams
December 1995, Journal of hematotherapy,
H J McKenna, and P de Vries, and K Brasel, and S D Lyman, and D E Williams
November 2006, Stem cells (Dayton, Ohio),
H J McKenna, and P de Vries, and K Brasel, and S D Lyman, and D E Williams
June 2011, Blood,
H J McKenna, and P de Vries, and K Brasel, and S D Lyman, and D E Williams
January 1994, Progress in clinical and biological research,
H J McKenna, and P de Vries, and K Brasel, and S D Lyman, and D E Williams
January 1994, Progress in clinical and biological research,
H J McKenna, and P de Vries, and K Brasel, and S D Lyman, and D E Williams
December 1994, ImmunoMethods,
H J McKenna, and P de Vries, and K Brasel, and S D Lyman, and D E Williams
January 2001, Experimental hematology,
H J McKenna, and P de Vries, and K Brasel, and S D Lyman, and D E Williams
March 2006, Biotechnology letters,
Copied contents to your clipboard!