| D008636 |
Mesencephalon |
The middle of the three primitive cerebral vesicles of the embryonic brain. Without further subdivision, midbrain develops into a short, constricted portion connecting the PONS and the DIENCEPHALON. Midbrain contains two major parts, the dorsal TECTUM MESENCEPHALI and the ventral TEGMENTUM MESENCEPHALI, housing components of auditory, visual, and other sensorimoter systems. |
Midbrain,Mesencephalons,Midbrains |
|
| D011518 |
Proto-Oncogene Proteins |
Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity. |
Cellular Proto-Oncogene Proteins,c-onc Proteins,Proto Oncogene Proteins, Cellular,Proto-Oncogene Products, Cellular,Cellular Proto Oncogene Proteins,Cellular Proto-Oncogene Products,Proto Oncogene Products, Cellular,Proto Oncogene Proteins,Proto-Oncogene Proteins, Cellular,c onc Proteins |
|
| D002490 |
Central Nervous System |
The main information-processing organs of the nervous system, consisting of the brain, spinal cord, and meninges. |
Cerebrospinal Axis,Axi, Cerebrospinal,Axis, Cerebrospinal,Central Nervous Systems,Cerebrospinal Axi,Nervous System, Central,Nervous Systems, Central,Systems, Central Nervous |
|
| D002531 |
Cerebellum |
The part of brain that lies behind the BRAIN STEM in the posterior base of skull (CRANIAL FOSSA, POSTERIOR). It is also known as the "little brain" with convolutions similar to those of CEREBRAL CORTEX, inner white matter, and deep cerebellar nuclei. Its function is to coordinate voluntary movements, maintain balance, and learn motor skills. |
Cerebella,Corpus Cerebelli,Parencephalon,Cerebellums,Parencephalons |
|
| D004627 |
Embryonic Induction |
The complex processes of initiating CELL DIFFERENTIATION in the embryo. The precise regulation by cell interactions leads to diversity of cell types and specific pattern of organization (EMBRYOGENESIS). |
Embryonic Inductions,Induction, Embryonic,Inductions, Embryonic |
|
| D000818 |
Animals |
Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. |
Animal,Metazoa,Animalia |
|
| D014714 |
Vertebrates |
Animals having a vertebral column, members of the phylum Chordata, subphylum Craniata comprising mammals, birds, reptiles, amphibians, and fishes. |
Vertebrate |
|
| D051153 |
Wnt Proteins |
Wnt proteins are a large family of secreted glycoproteins that play essential roles in EMBRYONIC AND FETAL DEVELOPMENT, and tissue maintenance. They bind to FRIZZLED RECEPTORS and act as PARACRINE PROTEIN FACTORS to initiate a variety of SIGNAL TRANSDUCTION PATHWAYS. The canonical Wnt signaling pathway stabilizes the transcriptional coactivator BETA CATENIN. |
Wingless Type Protein,Wnt Factor,Wnt Protein,Wingless Type Proteins,Wnt Factors,Factor, Wnt,Protein, Wingless Type,Protein, Wnt,Type Protein, Wingless |
|
| D051155 |
Wnt1 Protein |
A proto-oncogene protein and member of the Wnt family of proteins. It is expressed in the caudal MIDBRAIN and is essential for proper development of the entire mid-/hindbrain region. |
Proto-Oncogene Protein Int-1,Proto-Oncogene Protein Wnt-1,Wnt1 Proto-Oncogene Protein,Wnt-1 Protein,c-int Protein,Int-1, Proto-Oncogene Protein,Proto Oncogene Protein Int 1,Proto Oncogene Protein Wnt 1,Proto-Oncogene Protein, Wnt1,Wnt 1 Protein,Wnt-1, Proto-Oncogene Protein,Wnt1 Proto Oncogene Protein |
|
| D029961 |
Zebrafish Proteins |
Proteins obtained from the ZEBRAFISH. Many of the proteins in this species have been the subject of studies involving basic embryological development (EMBRYOLOGY). |
Brachydanio rerio Proteins,Danio rerio Proteins,Zebra Danio Proteins,Zebra Fish Proteins |
|