Signalling synapse formation between identified neurons. 1995

P Drapeau, and S Catarsi, and D C Merz
Centre for Research in Neuroscience, McGill University, Montreal, Quebec, Canada.

We have investigated the signals between identified leech neurons during the formation of specific synapses in culture. At an inhibitory serotonergic synapse between two well-studied neurons, the postsynaptic cell has an additional (extrasynaptic) excitatory response to 5-HT which may underly a form of activity-dependent modulation. Thus, the presynaptic neuron must select which 5-HT response will be activated and which will be excluded at its synapses. The selection of these responses preceded synapse formation and was specifically induced at sites of contact with the presynaptic neuron, this not being observed for other cell pairings. Aldehyde-fixed presynaptic cells were equally effective, unless pre-treated with trypsin or wheat germ agglutinin, suggesting that contact with a specific cell-surface glycoprotein induced this physiological change in 5-HT sensitivity. The mechanism underlying the selective loss of the extrasynaptic response has been examined by single channel recording. Cation channels in the postsynaptic neuron were modulated by protein kinase C (PKC) upon binding of 5-HT to a 5-HT2 receptor. However, at sites of contact with the presynaptic neuron, the channels were no longer sensitive to PKC. Furthermore, when cation channels from uncontacted neurons were inserted or 'crammed' into contacted neurons, they were rapidly rendered insensitive to PKC, demonstrating a cytoplasmic signal for the uncoupling of channel modulation. Interestingly, the cytoplasm of contacted postsynaptic neurons showed immunoreactivity for tyrosine phosphorylation: exposure of the neurons to specific inhibitors of tyrosine kinases prevented tyrosine phosphorylation, the loss of cation channel modulation and synapse formation.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D002412 Cations Positively charged atoms, radicals or groups of atoms which travel to the cathode or negative pole during electrolysis. Cation
D002450 Cell Communication Any of several ways in which living cells of an organism communicate with one another, whether by direct contact between cells or by means of chemical signals carried by neurotransmitter substances, hormones, and cyclic AMP. Cell Interaction,Cell-to-Cell Interaction,Cell Communications,Cell Interactions,Cell to Cell Interaction,Cell-to-Cell Interactions,Communication, Cell,Communications, Cell,Interaction, Cell,Interaction, Cell-to-Cell,Interactions, Cell,Interactions, Cell-to-Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012701 Serotonin A biochemical messenger and regulator, synthesized from the essential amino acid L-TRYPTOPHAN. In humans it is found primarily in the central nervous system, gastrointestinal tract, and blood platelets. Serotonin mediates several important physiological functions including neurotransmission, gastrointestinal motility, hemostasis, and cardiovascular integrity. Multiple receptor families (RECEPTORS, SEROTONIN) explain the broad physiological actions and distribution of this biochemical mediator. 5-HT,5-Hydroxytryptamine,3-(2-Aminoethyl)-1H-indol-5-ol,Enteramine,Hippophaine,Hydroxytryptamine,5 Hydroxytryptamine
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D014443 Tyrosine A non-essential amino acid. In animals it is synthesized from PHENYLALANINE. It is also the precursor of EPINEPHRINE; THYROID HORMONES; and melanin. L-Tyrosine,Tyrosine, L-isomer,para-Tyrosine,L Tyrosine,Tyrosine, L isomer,para Tyrosine

Related Publications

P Drapeau, and S Catarsi, and D C Merz
June 1998, Journal of neurophysiology,
P Drapeau, and S Catarsi, and D C Merz
July 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience,
P Drapeau, and S Catarsi, and D C Merz
August 1994, Journal of neurobiology,
P Drapeau, and S Catarsi, and D C Merz
January 2004, Physical review letters,
P Drapeau, and S Catarsi, and D C Merz
July 1995, Journal of neurobiology,
P Drapeau, and S Catarsi, and D C Merz
September 1985, Brain research,
P Drapeau, and S Catarsi, and D C Merz
July 2004, Nihon yakurigaku zasshi. Folia pharmacologica Japonica,
P Drapeau, and S Catarsi, and D C Merz
May 2009, Molecular pharmacology,
Copied contents to your clipboard!