How does taxol stabilize microtubules? 1995

I Arnal, and R H Wade
Laboratoire de Microscopie Electronique Structurale, Institute de Biologie Structurale Jean-Pierre Ebel (CEA, CNRS), Grenoble, France.

BACKGROUND The antimitotic agent taxol is an important new drug for the treatment of certain cancers. It blocks the cell cycle in its G1 or M phases by stabilizing the microtubule cytoskeleton against depolymerization. RESULTS We have used electron cryomicroscopy and image analysis to investigate the structure of microtubules assembled in vitro, and found that their fine structure was sensitive to the presence of taxol. The conformation of the microtubule lattice depended on whether the drug was added before or after assembly. The structure of preassembled microtubules changed only slightly when taxol was added; a larger change was observed when microtubules were assembled in the presence of the drug. In both cases, taxol-containing microtubules were stable over many days at, or below, room temperature. CONCLUSIONS As in another recent investigation using guanylyl-(alpha,beta)-methylene-diphosphonate (a non-hydrolyzable GTP analogue), microtubule stabilization with taxol is accompanied by a conformational change in the microtubule surface lattice and, implicitly, in the tubulin dimer. We speculate that a general mechanism may underlie the stabilization of microtubules by different agents.

UI MeSH Term Description Entries
D007091 Image Processing, Computer-Assisted A technique of inputting two-dimensional or three-dimensional images into a computer and then enhancing or analyzing the imagery into a form that is more useful to the human observer. Biomedical Image Processing,Computer-Assisted Image Processing,Digital Image Processing,Image Analysis, Computer-Assisted,Image Reconstruction,Medical Image Processing,Analysis, Computer-Assisted Image,Computer-Assisted Image Analysis,Computer Assisted Image Analysis,Computer Assisted Image Processing,Computer-Assisted Image Analyses,Image Analyses, Computer-Assisted,Image Analysis, Computer Assisted,Image Processing, Biomedical,Image Processing, Computer Assisted,Image Processing, Digital,Image Processing, Medical,Image Processings, Medical,Image Reconstructions,Medical Image Processings,Processing, Biomedical Image,Processing, Digital Image,Processing, Medical Image,Processings, Digital Image,Processings, Medical Image,Reconstruction, Image,Reconstructions, Image
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008870 Microtubules Slender, cylindrical filaments found in the cytoskeleton of plant and animal cells. They are composed of the protein TUBULIN and are influenced by TUBULIN MODULATORS. Microtubule
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D000972 Antineoplastic Agents, Phytogenic Agents obtained from higher plants that have demonstrable cytostatic or antineoplastic activity. Antineoplastics, Botanical,Antineoplastics, Phytogenic,Agents, Phytogenic Antineoplastic,Botanical Antineoplastics,Phytogenic Antineoplastic Agents,Phytogenic Antineoplastics
D017239 Paclitaxel A cyclodecane isolated from the bark of the Pacific yew tree, TAXUS BREVIFOLIA. It stabilizes MICROTUBULES in their polymerized form leading to cell death. 7-epi-Taxol,Anzatax,Bris Taxol,NSC-125973,Onxol,Paclitaxel, (4 alpha)-Isomer,Paxene,Praxel,Taxol,Taxol A,7 epi Taxol,NSC 125973,NSC125973,Taxol, Bris

Related Publications

I Arnal, and R H Wade
July 1990, The Journal of cell biology,
I Arnal, and R H Wade
September 1982, The Journal of cell biology,
I Arnal, and R H Wade
October 2003, Oncogene,
I Arnal, and R H Wade
January 2008, PloS one,
I Arnal, and R H Wade
September 1984, The Journal of cell biology,
I Arnal, and R H Wade
March 1980, Proceedings of the National Academy of Sciences of the United States of America,
I Arnal, and R H Wade
August 2004, Proceedings of the National Academy of Sciences of the United States of America,
I Arnal, and R H Wade
January 1991, Methods in enzymology,
I Arnal, and R H Wade
July 2023, Nature materials,
Copied contents to your clipboard!