Effects of systemic and local ethanol on responses of rat cerebellar Purkinje neurons to iontophoretically applied norepinephrine and gamma-aminobutyric acid. 1995

R S Lee, and S S Smith, and J K Chapin, and N Shimizu, and B D Waterhouse, and B N Maddus, and D J Woodward
Department of Neuropharmacology, Scripps Research Institute, La Jolla, CA 92037, USA.

The goal of the present study was to determine the effect of acute ethanol (ETOH), administered intraperitoneally or electro-osmotically, on norepinephrine (NE) induced increases in gamma-aminobutyric acid (GABA) mediated inhibition of single cerebellar Purkinje neurons (P-cells). Male Sprague-Dawley rats (230-370g) were anesthetized with halothane and implanted with an intraperitoneal catheter for systemic administration of ETOH (1.0-1.5 g/kg) prior to the recording session. Extracellular activity of single P-cells was recorded before and after iontophoresis of GABA and NE using five-barrel glass micropipettes. GABA was administered at the recording site by microiontophoretic pulses before, during and after continuous iontophoretic application of NE. Spontaneous discharge, GABA responses and NE-GABA interactions in P-cells were monitored for each experiment before and 1-1.5 h following systemic administration of ETOH. As in our previous reports administration of NE, at low ejection currents (10-60 nA), augmented GABA mediated suppression of P-cell spontaneous discharge. Between 10 and 60 min after injection of ETOH, this NE induced augmentation of GABA inhibition was further potentiated. This potentiation involved increases in both the magnitude and the duration of the GABA inhibition observed after NE alone. NE-induced augmentation of GABA inhibition persisted for 2-13 min longer after ETOH administration than in the pre-ETOH control period. Local electro-osmotic application of ETOH, which resulted in strong depression of spontaneous activity and caused small increases in GABA-mediated inhibition, did not directly potentiate NE-induced augmentation of GABA action. These results indicate that NE-mediated augmentation of GABA inhibition of P-cell activity is potentiated following systemic, but not local, ETOH administration.

UI MeSH Term Description Entries
D007274 Injections, Intraperitoneal Forceful administration into the peritoneal cavity of liquid medication, nutrient, or other fluid through a hollow needle piercing the abdominal wall. Intraperitoneal Injections,Injection, Intraperitoneal,Intraperitoneal Injection
D007478 Iontophoresis Therapeutic introduction of ions of soluble salts into tissues by means of electric current. In medical literature it is commonly used to indicate the process of increasing the penetration of drugs into surface tissues by the application of electric current. It has nothing to do with ION EXCHANGE; AIR IONIZATION nor PHONOPHORESIS, none of which requires current. Iontophoreses
D008297 Male Males
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D011689 Purkinje Cells The output neurons of the cerebellar cortex. Purkinje Cell,Purkinje Neuron,Purkyne Cell,Cell, Purkinje,Cell, Purkyne,Cells, Purkinje,Cells, Purkyne,Neuron, Purkinje,Neurons, Purkinje,Purkinje Neurons,Purkyne Cells
D002492 Central Nervous System Depressants A very loosely defined group of drugs that tend to reduce the activity of the central nervous system. The major groups included here are ethyl alcohol, anesthetics, hypnotics and sedatives, narcotics, and tranquilizing agents (antipsychotics and antianxiety agents). CNS Depressants,Depressants, CNS
D002531 Cerebellum The part of brain that lies behind the BRAIN STEM in the posterior base of skull (CRANIAL FOSSA, POSTERIOR). It is also known as the "little brain" with convolutions similar to those of CEREBRAL CORTEX, inner white matter, and deep cerebellar nuclei. Its function is to coordinate voluntary movements, maintain balance, and learn motor skills. Cerebella,Corpus Cerebelli,Parencephalon,Cerebellums,Parencephalons
D004357 Drug Synergism The action of a drug in promoting or enhancing the effectiveness of another drug. Drug Potentiation,Drug Augmentation,Augmentation, Drug,Augmentations, Drug,Drug Augmentations,Drug Potentiations,Drug Synergisms,Potentiation, Drug,Potentiations, Drug,Synergism, Drug,Synergisms, Drug
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt

Related Publications

R S Lee, and S S Smith, and J K Chapin, and N Shimizu, and B D Waterhouse, and B N Maddus, and D J Woodward
June 1981, Neuropharmacology,
R S Lee, and S S Smith, and J K Chapin, and N Shimizu, and B D Waterhouse, and B N Maddus, and D J Woodward
November 1998, Alcoholism, clinical and experimental research,
R S Lee, and S S Smith, and J K Chapin, and N Shimizu, and B D Waterhouse, and B N Maddus, and D J Woodward
January 1987, The Journal of comparative neurology,
R S Lee, and S S Smith, and J K Chapin, and N Shimizu, and B D Waterhouse, and B N Maddus, and D J Woodward
July 1974, Brain research,
R S Lee, and S S Smith, and J K Chapin, and N Shimizu, and B D Waterhouse, and B N Maddus, and D J Woodward
May 2000, Alcoholism, clinical and experimental research,
R S Lee, and S S Smith, and J K Chapin, and N Shimizu, and B D Waterhouse, and B N Maddus, and D J Woodward
April 1993, The Journal of pharmacology and experimental therapeutics,
R S Lee, and S S Smith, and J K Chapin, and N Shimizu, and B D Waterhouse, and B N Maddus, and D J Woodward
December 1985, Brain research,
R S Lee, and S S Smith, and J K Chapin, and N Shimizu, and B D Waterhouse, and B N Maddus, and D J Woodward
October 1983, Brain research,
R S Lee, and S S Smith, and J K Chapin, and N Shimizu, and B D Waterhouse, and B N Maddus, and D J Woodward
February 1984, The Journal of pharmacology and experimental therapeutics,
Copied contents to your clipboard!