Actions of diazoxide on CA1 neurons in hippocampal slices from rats. 1995

G Erdemli, and K Krnjević
Anaesthesia Research Department, McGill University, Montréal, QC, Canada.

Membrane effects of diazoxide (DZX) were examined in CA1 pyramidal neurons, mainly by whole-cell recording in slices kept at 33 degrees C (from Sprague-Dawley rats). Bath applications of DZX (0.65 mM) did not significantly change the resting input conductance; but instantaneous inward rectification was reduced by 47 +/- 14% (near -110 mV). There was a similar depression of a large, sustained voltage-dependent outward current (by 44 +/- 11% near 0 mV). A nearly identical reduction of the outward current recorded in a Ca current suppressing medium (but not in 30 mM tetraethylammonium) indicated that the DZX-sensitive current includes the delayed rectifier. In Mn, low-Ca medium containing tetraethylammonium and carbachol, DZX potentiated (by 43 +/- 12%) the D-type slowly decaying outward current seen after hyperpolarizing pulses at a holding potential of approximately -50 mV. DZX abolished or depressed slow inward currents, such as the tetrodotoxin-sensitive persistent Na current, high voltage activated Ca currents (IC50 = 0.47 mM), and the Q current. In 6 of 13 cells recorded with electrodes containing either guanosine or adenosine diphosphate, DZX potentiated the voltage-dependent outward current, but input conductances were reduced. In conclusion, although there was little indication that it activates classical KATP channels in CA1 neurons, DZX strongly depresses several voltage-dependent, slowly inactivating outward and inward currents, which are important modulators of cell excitability.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D003981 Diazoxide A benzothiadiazine derivative that is a peripheral vasodilator used for hypertensive emergencies. It lacks diuretic effect, apparently because it lacks a sulfonamide group. Hyperstat,Proglycem
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015220 Calcium Channels Voltage-dependent cell membrane glycoproteins selectively permeable to calcium ions. They are categorized as L-, T-, N-, P-, Q-, and R-types based on the activation and inactivation kinetics, ion specificity, and sensitivity to drugs and toxins. The L- and T-types are present throughout the cardiovascular and central nervous systems and the N-, P-, Q-, & R-types are located in neuronal tissue. Ion Channels, Calcium,Receptors, Calcium Channel Blocker,Voltage-Dependent Calcium Channel,Calcium Channel,Calcium Channel Antagonist Receptor,Calcium Channel Antagonist Receptors,Calcium Channel Blocker Receptor,Calcium Channel Blocker Receptors,Ion Channel, Calcium,Receptors, Calcium Channel Antagonist,VDCC,Voltage-Dependent Calcium Channels,Calcium Channel, Voltage-Dependent,Calcium Channels, Voltage-Dependent,Calcium Ion Channel,Calcium Ion Channels,Channel, Voltage-Dependent Calcium,Channels, Voltage-Dependent Calcium,Voltage Dependent Calcium Channel,Voltage Dependent Calcium Channels
D015221 Potassium Channels Cell membrane glycoproteins that are selectively permeable to potassium ions. At least eight major groups of K channels exist and they are made up of dozens of different subunits. Ion Channels, Potassium,Ion Channel, Potassium,Potassium Channel,Potassium Ion Channels,Channel, Potassium,Channel, Potassium Ion,Channels, Potassium,Channels, Potassium Ion,Potassium Ion Channel
D015222 Sodium Channels Ion channels that specifically allow the passage of SODIUM ions. A variety of specific sodium channel subtypes are involved in serving specialized functions such as neuronal signaling, CARDIAC MUSCLE contraction, and KIDNEY function. Ion Channels, Sodium,Ion Channel, Sodium,Sodium Channel,Sodium Ion Channels,Channel, Sodium,Channel, Sodium Ion,Channels, Sodium,Channels, Sodium Ion,Sodium Ion Channel
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats

Related Publications

G Erdemli, and K Krnjević
September 1998, The Journal of pharmacology and experimental therapeutics,
G Erdemli, and K Krnjević
September 1985, The Journal of physiology,
G Erdemli, and K Krnjević
November 1988, The Journal of pharmacology and experimental therapeutics,
G Erdemli, and K Krnjević
September 1984, Brain research,
G Erdemli, and K Krnjević
October 1990, Canadian journal of physiology and pharmacology,
G Erdemli, and K Krnjević
March 1996, Canadian journal of physiology and pharmacology,
G Erdemli, and K Krnjević
May 1990, Canadian journal of physiology and pharmacology,
G Erdemli, and K Krnjević
January 2022, Frontiers in cellular neuroscience,
Copied contents to your clipboard!