Effects of phenethyl isothiocyanate on the tissue distribution of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and metabolites in F344 rats. 1995

M E Staretz, and S S Hecht
American Health Foundation, Valhalla, New York 10595, USA.

Phenethyl isothiocyanate (PEITC), a naturally occurring chemopreventive agent, inhibits lung tumor induction in rats by the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). In this study, we examined the mechanism of tumor inhibition by determining the effects of dietary PEITC on levels of NNK and its metabolites in various tissues of NNK-treated F344 rats. F344 rats were fed control or PEITC-containing diets (3 mumol/g diet) before and throughout NNK treatment. To study NNK metabolism and distribution under both short-term and chronic NNK/NNK+PEITC treatments, control and PEITC-treated groups were divided into four subgroups. Subgroups were treated with either a single injection of [5-3H]NNK (1.76 mg/kg) or a total of 12, 24, and 36 doses of NNK administered three times/week. After a final injection of [5-3H]NNK in each subgroup, the rats were sacrificed at various time intervals, and NNK and its metabolites in lung, liver, nasal mucosa, pancreas, kidney, stomach, and serum were measured. Time-course curves for the tissue metabolites were generated, and the areas-under-the-curves were compared. We observed that lung, liver, and nasal mucosa, target tissues of NNK carcinogenesis in F344 rats, were also the tissues that had the highest levels of alpha-hydroxylation metabolites relative to NNK and its carbonyl reduction metabolite, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL). The most pronounced effect of PEITC was a reduction in levels of alpha-hydroxylation metabolites in most tissues examined (except nasal mucosa). The ratio of alpha-hydroxylation products to NNK + NNAL in most tissues was decreased by PEITC, indicating that alpha-hydroxylation of NNK/NNAL was inhibited. PEITC did not significantly affect the total levels of NNK and its metabolites in the lung and most tissues examined, indicating that PEITC does not alter the amount of NNK reaching the lung. These results support the hypothesis that inhibition of NNK-induced lung tumorigenesis by PEITC is a result of decreased metabolic activation of NNK.

UI MeSH Term Description Entries
D008297 Male Males
D009602 Nitrosamines A class of compounds that contain a -NH2 and a -NO radical. Many members of this group have carcinogenic and mutagenic properties. Nitrosamine
D011916 Rats, Inbred F344 An inbred strain of rat that is used for general BIOMEDICAL RESEARCH purposes. Fischer Rats,Rats, Inbred CDF,Rats, Inbred Fischer 344,Rats, F344,Rats, Inbred Fisher 344,CDF Rat, Inbred,CDF Rats, Inbred,F344 Rat,F344 Rat, Inbred,F344 Rats,F344 Rats, Inbred,Inbred CDF Rat,Inbred CDF Rats,Inbred F344 Rat,Inbred F344 Rats,Rat, F344,Rat, Inbred CDF,Rat, Inbred F344,Rats, Fischer
D002273 Carcinogens Substances that increase the risk of NEOPLASMS in humans or animals. Both genotoxic chemicals, which affect DNA directly, and nongenotoxic chemicals, which induce neoplasms by other mechanism, are included. Carcinogen,Oncogen,Oncogens,Tumor Initiator,Tumor Initiators,Tumor Promoter,Tumor Promoters,Initiator, Tumor,Initiators, Tumor,Promoter, Tumor,Promoters, Tumor
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014018 Tissue Distribution Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios. Distribution, Tissue,Distributions, Tissue,Tissue Distributions
D016588 Anticarcinogenic Agents Agents that reduce the frequency or rate of spontaneous or induced tumors independently of the mechanism involved. Anti-Carcinogenic Agents,Anti-Carcinogenic Drugs,Anti-Carcinogenic Effect,Anti-Carcinogenic Effects,Anticarcinogenic Drugs,Anticarcinogenic Effect,Anticarcinogenic Effects,Anticarcinogens,Agents, Anti-Carcinogenic,Agents, Anticarcinogenic,Anti Carcinogenic Agents,Anti Carcinogenic Drugs,Anti Carcinogenic Effect,Anti Carcinogenic Effects,Drugs, Anti-Carcinogenic,Drugs, Anticarcinogenic,Effect, Anti-Carcinogenic,Effect, Anticarcinogenic,Effects, Anti-Carcinogenic,Effects, Anticarcinogenic
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D017879 Isothiocyanates Organic compounds with the general formula R-NCS.

Related Publications

Copied contents to your clipboard!