Defects in the DNA repair and transcription gene ERCC2 in the cancer-prone disorder xeroderma pigmentosum group D. 1995

K Takayama, and E P Salazar, and A Lehmann, and M Stefanini, and L H Thompson, and C A Weber
Biology and Biotechnology Research Program, Lawrence Livermore National Laboratory, Livermore, California 94551, USA.

Xeroderma pigmentosum (XP) is a sun-sensitive, cancer-prone genetic disorder characterized by a defect in nucleotide excision repair. The human nucleotide excision repair and transcription gene ERCC2 is able to restore survival to normal levels after exposure to UV light in XP complementation group D cells. No enhancement of UV survival is seen in groups C, E, F, or G. XP-CS-2 cells are complemented by ERCC2, confirming the reassignment to group D of this combined XP/Cockayne's syndrome patient. Nucleotide sequence analysis of the ERCC2 cDNA from five XP group D cell strains [XP6BE(SV40), XP17PV, XP102LO, A31-27 (a HeLa/XP102LO hybrid), and XP-CS-2] revealed mutations predominantly affecting previously identified functional domains. The mutations include base substitutions resulting in amino acid substitutions, deletions due to splicing alterations, and defects in expression. XP6BE(SV40), XP17PV, XP102LO, and A31-27 all have one allele with an Arg683 to Trp substitution within the putative nuclear location signal. The genetic disorder trichothiodystrophy (which is not cancer-prone) can also result from mutations in the ERCC2 gene, some of which are the same as those found in XP-D. The various clinical presentations can be correlated with the particular mutations found in the ERCC2 locus.

UI MeSH Term Description Entries
D008297 Male Males
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002675 Child, Preschool A child between the ages of 2 and 5. Children, Preschool,Preschool Child,Preschool Children
D004252 DNA Mutational Analysis Biochemical identification of mutational changes in a nucleotide sequence. Mutational Analysis, DNA,Analysis, DNA Mutational,Analyses, DNA Mutational,DNA Mutational Analyses,Mutational Analyses, DNA
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D004265 DNA Helicases Proteins that catalyze the unwinding of duplex DNA during replication by binding cooperatively to single-stranded regions of DNA or to short regions of duplex DNA that are undergoing transient opening. In addition, DNA helicases are DNA-dependent ATPases that harness the free energy of ATP hydrolysis to translocate DNA strands. ATP-Dependent DNA Helicase,DNA Helicase,DNA Unwinding Protein,DNA Unwinding Proteins,ATP-Dependent DNA Helicases,DNA Helicase A,DNA Helicase E,DNA Helicase II,DNA Helicase III,ATP Dependent DNA Helicase,ATP Dependent DNA Helicases,DNA Helicase, ATP-Dependent,DNA Helicases, ATP-Dependent,Helicase, ATP-Dependent DNA,Helicase, DNA,Helicases, ATP-Dependent DNA,Helicases, DNA,Protein, DNA Unwinding,Unwinding Protein, DNA,Unwinding Proteins, DNA
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D005260 Female Females

Related Publications

K Takayama, and E P Salazar, and A Lehmann, and M Stefanini, and L H Thompson, and C A Weber
December 1998, Bulletin du cancer,
K Takayama, and E P Salazar, and A Lehmann, and M Stefanini, and L H Thompson, and C A Weber
June 1994, Nature genetics,
K Takayama, and E P Salazar, and A Lehmann, and M Stefanini, and L H Thompson, and C A Weber
January 2001, Advances in genetics,
K Takayama, and E P Salazar, and A Lehmann, and M Stefanini, and L H Thompson, and C A Weber
January 1998, Cancer research,
K Takayama, and E P Salazar, and A Lehmann, and M Stefanini, and L H Thompson, and C A Weber
July 2003, Human gene therapy,
K Takayama, and E P Salazar, and A Lehmann, and M Stefanini, and L H Thompson, and C A Weber
January 1992, Proceedings of the National Academy of Sciences of the United States of America,
K Takayama, and E P Salazar, and A Lehmann, and M Stefanini, and L H Thompson, and C A Weber
September 2012, Zhonghua gan zang bing za zhi = Zhonghua ganzangbing zazhi = Chinese journal of hepatology,
K Takayama, and E P Salazar, and A Lehmann, and M Stefanini, and L H Thompson, and C A Weber
August 1997, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!