Molecular biology of somatostatin receptors. 1995

G I Bell, and K Yasuda, and H Kong, and S F Law, and K Raynor, and T Reisine
Howard Hughes Medical Institute, University of Chicago, IL 60637, USA.

The diverse physiological effects of somatostatin are mediated by a family of cell surface receptors that bind somatostatin selectively and with high affinity. The somatostatin receptors are members of the seven transmembrane segment receptor superfamily and molecular cloning studies have identified five types, designated sstr1-5. The human somatostatin receptors vary in size from 364 (sstr5) to 418 (sstr3) amino acids with 46-61% amino acid identity between receptors, and 105 amino acids are invariant. The sequences of the seven putative alpha-helical membrane-spanning domains are more highly conserved than those of the extracellular N- and intracellular C-terminal domains. Two forms of sstr2 have been identified in the mouse, sstr2A and sstr2B, which differ in size and sequence of the intracellular C-terminal domain. These two forms of sstr2 are products of a common gene and are generated by alternative splicing with sstr2A and sstr2B being the products of the unspliced and spliced forms, respectively, of sstr2 mRNA. Thus, functional diversity within the somatostatin receptor family may result from the expression of multiple types as well as from alternative splicing. The five somatostatin receptors have distinct patterns of expression in the central nervous system and peripheral tissues. They have also been expressed in vitro and shown to have different pharmacological properties. Somatostatin analogues selective for sstr2, sstr3 and sstr5 have been identified which will facilitate in vivo studies of the functions of these somatostatin receptors. Such studies to date suggest that sstr2 mediates inhibition of growth hormone secretion and sstr5 mediates inhibition of insulin secretion. The molecular cloning and functional characterization of the somatostatin receptor family is a first step in elucidating the diverse effects of somatostatin on cellular functions.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D017481 Receptors, Somatostatin Cell surface proteins that bind somatostatin and trigger intracellular changes which influence the behavior of cells. Somatostatin is a hypothalamic hormone, a pancreatic hormone, and a central and peripheral neurotransmitter. Activated somatostatin receptors on pituitary cells inhibit the release of growth hormone; those on endocrine and gastrointestinal cells regulate the absorption and utilization of nutrients; and those on neurons mediate somatostatin's role as a neurotransmitter. Receptors, Somatotropin Release Inhibiting Hormone,Somatostatin Receptors,Receptors, SRIH,SRIH Receptors,Somatostatin Receptor,Receptor, Somatostatin

Related Publications

G I Bell, and K Yasuda, and H Kong, and S F Law, and K Raynor, and T Reisine
January 1993, Trends in neurosciences,
G I Bell, and K Yasuda, and H Kong, and S F Law, and K Raynor, and T Reisine
August 1995, Endocrine reviews,
G I Bell, and K Yasuda, and H Kong, and S F Law, and K Raynor, and T Reisine
January 1999, Results and problems in cell differentiation,
G I Bell, and K Yasuda, and H Kong, and S F Law, and K Raynor, and T Reisine
February 2001, Neuropeptides,
G I Bell, and K Yasuda, and H Kong, and S F Law, and K Raynor, and T Reisine
December 2023, International journal of molecular sciences,
G I Bell, and K Yasuda, and H Kong, and S F Law, and K Raynor, and T Reisine
November 1996, Zeitschrift fur Gastroenterologie,
G I Bell, and K Yasuda, and H Kong, and S F Law, and K Raynor, and T Reisine
October 2001, Expert opinion on therapeutic targets,
G I Bell, and K Yasuda, and H Kong, and S F Law, and K Raynor, and T Reisine
August 1996, Metabolism: clinical and experimental,
G I Bell, and K Yasuda, and H Kong, and S F Law, and K Raynor, and T Reisine
January 1995, Fundamental & clinical pharmacology,
G I Bell, and K Yasuda, and H Kong, and S F Law, and K Raynor, and T Reisine
April 2004, Annals of the New York Academy of Sciences,
Copied contents to your clipboard!