Induction of liver microsomal cytochrome P450 in cynomolgus monkeys. 1995

P Bullock, and R Pearce, and A Draper, and J Podval, and W Bracken, and J Veltman, and P Thomas, and A Parkinson
Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City 66160-7417, USA.

The aim of this study was to determine whether treatment of cynomolgus monkeys (Macaca fasicularis) with phenobarbital, beta-naphthoflavone, or dexamethasone causes an induction of microsomal crytochrome P450 (CYP) enzymes that are structurally and functionally related to rat enzymes belonging to the CYP1A, CYP2B, and CYP3A gene families. Oral treatment of male and female monkeys with phenobarbital resulted in a marked induction of a protein recognized by antibody against rat CYP2B1, as determined by Western immunoblotting. This protein, presumably a CYP2B enzyme, was not detectable in untreated monkeys, and was modestly inducible by dexamethasone but not beta-naphthoflavone. Induction of this CYP2B enzyme by phenobarbital was associated with a relatively large increase (up to 5-fold) in the rate of testosterone 16 beta-hydroxylation. Antibody, against rat CYP2B1 markedly inhibited this reaction in liver microsomes from phenobarbital-treated monkeys, but not from control monkeys. Consequently, the antibody-inhibitable rate of testosterone 16 beta-hydroxylation increased 17-fold after treatment of monkeys with phenobarbital, which is comparable with the situation in rats. In contrast to the rat CYP2B enzymes, the monkey CYP2B enzyme had little or no capacity to convert testosterone to 16 alpha-hydroxytestosterone or androstenedione, and had negligible capacity to O-dealkylate 7-pentoxyresorufin and 7-benzyloxyresorufin. Oral treatment of male and female monkeys with beta-naphthoflavone resulted in a marked induction of a protein recognized by polyclonal and monoclonal antibodies against rat CYP1A1 or against both CYP1A1 and CYP1A2. This protein was apparently a mixture of CYP1A1 and CYP1A2, neither of which was readily detectable in liver microsomes from control monkeys or monkeys treated with phenobarbital or dexamethasone. Induction of monkey CYP1A1/2 was associated with a marked increase in the O-dealkylation of 7-methoxyresorufin (up to 65-fold), the O-dealkylation of 7-ethoxyresorufin (up to 30-fold), and the N3-demethylation of caffeine (up to 17-fold), but only a 2-fold increase in benzo[a]pyrene 3-hydroxylation. Polyclonal antibodies against CYP1A1 markedly inhibited the N3-demethylation of caffeine and the O-dealkylation of 7-methoxy- and 7-ethoxyresorufin by liver microsomes from beta-naphthoflavone-treated monkeys, and partially inhibited the 3-hydroxylation of benzo[a]pyrene, indicating that monkey CYP1A1 and/or CYP1A2, like the corresponding rat enzymes, can catalyze all four reactions. Treatment of monkeys with phenobarbital resulted in a 2- to 3-fold induction of a protein recognized by antibody against rat CYP3A1. This protein (CYP3A8 or an immunochemically related enzyme) was constitutively expressed in untreated monkeys of both sexes.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D008252 Macaca fascicularis A species of the genus MACACA which typically lives near the coast in tidal creeks and mangrove swamps primarily on the islands of the Malay peninsula. Burmese Long-Tailed Macaque,Crab-Eating Monkey,Cynomolgus Monkey,M. f. aurea,M. fascicularis,Macaca fascicularis aurea,Monkey, Crab-Eating,Monkey, Cynomolgus,Crab-Eating Macaque,Burmese Long Tailed Macaque,Crab Eating Macaque,Crab Eating Monkey,Crab-Eating Macaques,Crab-Eating Monkeys,Cynomolgus Monkeys,Long-Tailed Macaque, Burmese,Macaque, Burmese Long-Tailed,Macaque, Crab-Eating,Monkey, Crab Eating
D008297 Male Males
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D009251 NADPH-Ferrihemoprotein Reductase A flavoprotein that catalyzes the reduction of heme-thiolate-dependent monooxygenases and is part of the microsomal hydroxylating system. EC 1.6.2.4. Cytochrome P-450 Reductase,Ferrihemoprotein P-450 Reductase,NADPH Cytochrome P-450 Oxidoreductase,NADPH Cytochrome P-450 Reductase,NADPH Cytochrome c Reductase,Cytochrome P-450 Oxidase,Cytochrome P450 Reductase,Ferrihemoprotein P450 Reductase,NADPH Cytochrome P450 Oxidoreductase,NADPH Cytochrome P450 Reductase,NADPH-Cytochrome P450 Reductase,NADPH-P450 Reductase,Cytochrome P 450 Oxidase,Cytochrome P 450 Reductase,Ferrihemoprotein P 450 Reductase,NADPH Cytochrome P 450 Oxidoreductase,NADPH Cytochrome P 450 Reductase,NADPH Ferrihemoprotein Reductase,NADPH P450 Reductase,Oxidase, Cytochrome P-450,P-450 Oxidase, Cytochrome,P450 Reductase, Cytochrome,P450 Reductase, NADPH-Cytochrome,Reductase, Cytochrome P-450,Reductase, Cytochrome P450,Reductase, Ferrihemoprotein P-450,Reductase, Ferrihemoprotein P450,Reductase, NADPH-Cytochrome P450,Reductase, NADPH-Ferrihemoprotein,Reductase, NADPH-P450
D010078 Oxazines Six-membered heterocycles containing an oxygen and a nitrogen.
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010634 Phenobarbital A barbituric acid derivative that acts as a nonselective central nervous system depressant. It potentiates GAMMA-AMINOBUTYRIC ACID action on GABA-A RECEPTORS, and modulates chloride currents through receptor channels. It also inhibits glutamate induced depolarizations. Phenemal,Phenobarbitone,Phenylbarbital,Gardenal,Hysteps,Luminal,Phenobarbital Sodium,Phenobarbital, Monosodium Salt,Phenylethylbarbituric Acid,Acid, Phenylethylbarbituric,Monosodium Salt Phenobarbital,Sodium, Phenobarbital
D002110 Caffeine A methylxanthine naturally occurring in some beverages and also used as a pharmacological agent. Caffeine's most notable pharmacological effect is as a central nervous system stimulant, increasing alertness and producing agitation. It also relaxes SMOOTH MUSCLE, stimulates CARDIAC MUSCLE, stimulates DIURESIS, and appears to be useful in the treatment of some types of headache. Several cellular actions of caffeine have been observed, but it is not entirely clear how each contributes to its pharmacological profile. Among the most important are inhibition of cyclic nucleotide PHOSPHODIESTERASES, antagonism of ADENOSINE RECEPTORS, and modulation of intracellular calcium handling. 1,3,7-Trimethylxanthine,Caffedrine,Coffeinum N,Coffeinum Purrum,Dexitac,Durvitan,No Doz,Percoffedrinol N,Percutaféine,Quick-Pep,Vivarin,Quick Pep,QuickPep
D003374 Coumarins Synthetic or naturally occurring substances related to coumarin, the delta-lactone of coumarinic acid. 1,2-Benzopyrone Derivatives,1,2-Benzopyrones,Coumarin Derivative,Coumarine,1,2-Benzo-Pyrones,Benzopyran-2-ones,Coumarin Derivatives,Coumarines,1,2 Benzo Pyrones,1,2 Benzopyrone Derivatives,1,2 Benzopyrones,Benzopyran 2 ones,Derivative, Coumarin,Derivatives, 1,2-Benzopyrone,Derivatives, Coumarin

Related Publications

P Bullock, and R Pearce, and A Draper, and J Podval, and W Bracken, and J Veltman, and P Thomas, and A Parkinson
March 1994, Pharmacology,
P Bullock, and R Pearce, and A Draper, and J Podval, and W Bracken, and J Veltman, and P Thomas, and A Parkinson
September 1993, Archives of biochemistry and biophysics,
P Bullock, and R Pearce, and A Draper, and J Podval, and W Bracken, and J Veltman, and P Thomas, and A Parkinson
November 2011, The Journal of pharmacology and experimental therapeutics,
P Bullock, and R Pearce, and A Draper, and J Podval, and W Bracken, and J Veltman, and P Thomas, and A Parkinson
February 1993, Molecular pharmacology,
P Bullock, and R Pearce, and A Draper, and J Podval, and W Bracken, and J Veltman, and P Thomas, and A Parkinson
November 2016, Biochemical pharmacology,
P Bullock, and R Pearce, and A Draper, and J Podval, and W Bracken, and J Veltman, and P Thomas, and A Parkinson
April 2005, Experimental animals,
P Bullock, and R Pearce, and A Draper, and J Podval, and W Bracken, and J Veltman, and P Thomas, and A Parkinson
January 2010, Drug metabolism and pharmacokinetics,
P Bullock, and R Pearce, and A Draper, and J Podval, and W Bracken, and J Veltman, and P Thomas, and A Parkinson
June 2017, Xenobiotica; the fate of foreign compounds in biological systems,
P Bullock, and R Pearce, and A Draper, and J Podval, and W Bracken, and J Veltman, and P Thomas, and A Parkinson
January 2010, Drug metabolism and pharmacokinetics,
P Bullock, and R Pearce, and A Draper, and J Podval, and W Bracken, and J Veltman, and P Thomas, and A Parkinson
March 1999, Biomedical and environmental sciences : BES,
Copied contents to your clipboard!