Expression of human P450c17 as an export protein in Saccharomyces cerevisiae. 1995

A C Swart, and P Swart, and S P Roux, and K J van der Merwe, and I S Pretorius, and A J Steyn
Department of Biochemistry, University of Stellenbosch, South Africa.

Cytochrome P450c17 (P450c17), together with cytochrome P450c21 (P450c21), plays an important role in progesterone metabolism in the mammalian adrenal cortex. Low levels of expression and the presence of other steroidogenic enzymes in adrenal cortex endoplasmic reticulum (ER) impedes purification and characterisation of wild type as well as mutant forms of the hemoprotein. Heterologous gene expression systems have previously been used successfully to express active P450c17. Heterologous expression can also be used for the preparation of anti-P450c17-IgG. For antibody production larger amounts of pure P450c17 peptide, rather than the active protein, is, however, desirable. If the expressed protein can be affinity tagged and secreted into the medium, isolation and purification will be facilitated. Saccharomyces cerevisiae, YPH259, was transformed with a modified YCplac111 yeast expression-secretion vector (pPRL2). The gene coding for a truncated human P450c17 (signal anchor sequence 1-18 was removed) was inserted, in reading frame, downstream from the leader sequence MF alpha. A histidine tag was incorporated at the C-terminus. The modified yeast expression vector was expressed in yeast, the secreted P450c17-peptide purified by affinity chromatography and identified by immunoblot analysis.

UI MeSH Term Description Entries
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D013254 Steroid 17-alpha-Hydroxylase A microsomal cytochrome P450 enzyme that catalyzes the 17-alpha-hydroxylation of progesterone or pregnenolone and subsequent cleavage of the residual two carbons at C17 in the presence of molecular oxygen and NADPH-FERRIHEMOPROTEIN REDUCTASE. This enzyme, encoded by CYP17 gene, generates precursors for glucocorticoid, androgen, and estrogen synthesis. Defects in CYP17 gene cause congenital adrenal hyperplasia (ADRENAL HYPERPLASIA, CONGENITAL) and abnormal sexual differentiation. 17 alpha-Hydroxylase,17,20-Lyase,CYP17,Cytochrome P-450(17 alpha),P450(c17),Steroid 17 alpha-Monooxygenase,Steroid 17-Hydroxylase,Steroid 17-Monooxygenase,17 alpha-Hydroxylase Cytochrome P-450,17 alpha-Hydroxyprogesterone Aldolase,17,20-Desmolase,Cytochrome P-450(17-alpha),Cytochrome P450(17 alpha),Hydroxyprogesterone Aldolase,Steroid 17 alpha-Hydroxylase,Steroid-17-Hydroxylase,17 alpha Hydroxylase,17 alpha Hydroxylase Cytochrome P 450,17 alpha Hydroxyprogesterone Aldolase,17 alpha-Hydroxylase, Steroid,17 alpha-Monooxygenase, Steroid,17,20 Desmolase,17,20 Lyase,17-Hydroxylase, Steroid,17-Monooxygenase, Steroid,17-alpha-Hydroxylase, Steroid,Aldolase, 17 alpha-Hydroxyprogesterone,Aldolase, Hydroxyprogesterone,Steroid 17 Hydroxylase,Steroid 17 Monooxygenase,Steroid 17 alpha Hydroxylase,Steroid 17 alpha Monooxygenase,alpha-Hydroxyprogesterone Aldolase, 17,alpha-Monooxygenase, Steroid 17

Related Publications

A C Swart, and P Swart, and S P Roux, and K J van der Merwe, and I S Pretorius, and A J Steyn
January 1989, DNA (Mary Ann Liebert, Inc.),
A C Swart, and P Swart, and S P Roux, and K J van der Merwe, and I S Pretorius, and A J Steyn
December 2006, Current microbiology,
A C Swart, and P Swart, and S P Roux, and K J van der Merwe, and I S Pretorius, and A J Steyn
June 1996, The Journal of cell biology,
A C Swart, and P Swart, and S P Roux, and K J van der Merwe, and I S Pretorius, and A J Steyn
December 1990, Biochemical and biophysical research communications,
A C Swart, and P Swart, and S P Roux, and K J van der Merwe, and I S Pretorius, and A J Steyn
May 2001, Current protocols in protein science,
A C Swart, and P Swart, and S P Roux, and K J van der Merwe, and I S Pretorius, and A J Steyn
February 1994, Biochemical Society transactions,
A C Swart, and P Swart, and S P Roux, and K J van der Merwe, and I S Pretorius, and A J Steyn
January 2016, Methods in molecular biology (Clifton, N.J.),
A C Swart, and P Swart, and S P Roux, and K J van der Merwe, and I S Pretorius, and A J Steyn
December 2023, International journal of molecular sciences,
A C Swart, and P Swart, and S P Roux, and K J van der Merwe, and I S Pretorius, and A J Steyn
July 2018, Current protocols in molecular biology,
A C Swart, and P Swart, and S P Roux, and K J van der Merwe, and I S Pretorius, and A J Steyn
August 1990, Protein engineering,
Copied contents to your clipboard!