Kinetics of plasma potassium concentrations during exhausting exercise in trained and untrained men. 1995

E Marcos, and J Ribas
Departmento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Spain.

The purpose of this study was to examine the time course of changes in plasma potassium concentration during high intensity exercise and recovery in trained and untrained men. The subjects performed two exercise protocols, an incremental test and a sprint, on a cycle ergometer. A polyethylene catheter was inserted into the antecubital vein to obtain blood samples for the analysis of plasma electrolyte concentrations and acid-base parameters, during and after exercise. During both tests, venous plasma sodium, potassium and chloride concentrations increased in all the subjects, although the largest relative increase was detected in potassium concentration--35% and 31% over rest in the progressive test and 61% and 37.7% in the sprint test, for cyclists and controls, respectively. After exercise plasma potassium concentration decreased exponentially to below resting values. There was a linear correlation between the amount of potassium accumulated in plasma during exercise and the amount eliminated from plasma when the exercise ceased. We found that, although plasma potassium accumulation occurred in both forms of exercise in the trained and nontrained subjects, the time constant of potassium decrease following exercise was shorter in the trained subjects. Thus, the trained subjects exhibited a better capacity to recover to resting concentrations of plasma potassium. We propose that the extracellular potassium accumulation acts as a negative feedback signal for sarcolemma excitability depending on the muscle metabolic rate.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007773 Lactates Salts or esters of LACTIC ACID containing the general formula CH3CHOHCOOR.
D008297 Male Males
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D010806 Physical Education and Training Instructional programs in the care and development of the body, often in schools. The concept does not include prescribed exercises, which is EXERCISE THERAPY. Education, Physical,Physical Education,Physical Education, Training
D010807 Physical Endurance The time span between the beginning of physical activity by an individual and the termination because of exhaustion. Endurance, Physical,Physical Stamina,Stamina, Physical
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D004573 Electrolytes Substances that dissociate into two or more ions, to some extent, in water. Solutions of electrolytes thus conduct an electric current and can be decomposed by it (ELECTROLYSIS). (Grant & Hackh's Chemical Dictionary, 5th ed) Electrolyte
D005082 Physical Exertion Expenditure of energy during PHYSICAL ACTIVITY. Intensity of exertion may be measured by rate of OXYGEN CONSUMPTION; HEAT produced, or HEART RATE. Perceived exertion, a psychological measure of exertion, is included. Physical Effort,Effort, Physical,Efforts, Physical,Exertion, Physical,Exertions, Physical,Physical Efforts,Physical Exertions
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

E Marcos, and J Ribas
October 1992, Journal of applied physiology (Bethesda, Md. : 1985),
E Marcos, and J Ribas
August 1981, International journal of sports medicine,
E Marcos, and J Ribas
February 1994, Acta physiologica Scandinavica,
E Marcos, and J Ribas
February 1998, Medicine and science in sports and exercise,
E Marcos, and J Ribas
March 1995, Journal of applied physiology (Bethesda, Md. : 1985),
E Marcos, and J Ribas
December 1994, The American journal of physiology,
E Marcos, and J Ribas
January 2000, Metabolism: clinical and experimental,
E Marcos, and J Ribas
March 1998, The American journal of physiology,
E Marcos, and J Ribas
November 1993, Journal of applied physiology (Bethesda, Md. : 1985),
E Marcos, and J Ribas
July 1999, The American journal of physiology,
Copied contents to your clipboard!