Purification and biochemical characterization of myomesin, a myosin-binding and titin-binding protein, from bovine skeletal muscle. 1995

W M Obermann, and U Plessmann, and K Weber, and D O Fürst
Max-Planck-Institute for Biophysical Chemistry, Department of Biochemistry, Göttingen, Germany.

We report a method for isolating homogeneous myomesin from mammalian skeletal muscle. The identity of the purified bovine protein was confirmed by its reactivity with myomesin-specific monoclonal antibodies and with polyclonal antibodies raised against peptides derived from the amino-terminal and carboxy-terminal ends of the sequence predicted by the human myomesin cDNA. All partial sequences obtained from bovine myomesin can be aligned along the human sequence predicted by its cloned cDNA. Electron microscopy of myomesin revealed short flexible rods with a molecular length of about 50 nm. Circular dichroism spectra showed a high degree of beta structure as expected for a member of the immunoglobulin superfamily of proteins. Alignment of the sequences of the class I and II domains of myomesin with the sequences of domains of known three-dimensional structure provides a more detailed model of myomesin. In agreement with this view, the cleavage sites observed by limited proteolysis locate primarily between individual domains. In a solid-phase overlay assay myomesin specifically bound to the myosin rod and to light meromyosin (LMM), but not to the carboxy-terminal 30-kDa fragment of LMM. The myosin-binding site seemed to be confined to the amino-terminal 240 residues of the molecule. The cross-reactivity of myomesin with the phosphorylation-dependent monoclonal neurofilament antibody NE14 [Shaw, G.E., Debus, E. & Weber, K. (1984) Eur. J. Cell Biol. 34, 130-136] was analyzed. NE14 reactivity of myomesin was abolished by alkaline phosphatase. Reactivity of the antibody on stable proteolytic fragments of myomesin showed that the phosphorylation site must reside within the carboxy-terminal 60 residues.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009124 Muscle Proteins The protein constituents of muscle, the major ones being ACTINS and MYOSINS. More than a dozen accessory proteins exist including TROPONIN; TROPOMYOSIN; and DYSTROPHIN. Muscle Protein,Protein, Muscle,Proteins, Muscle
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011494 Protein Kinases A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein. Protein Kinase,Kinase, Protein,Kinases, Protein
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

W M Obermann, and U Plessmann, and K Weber, and D O Fürst
August 1992, Journal of cell science,
W M Obermann, and U Plessmann, and K Weber, and D O Fürst
February 1984, Journal of neurochemistry,
W M Obermann, and U Plessmann, and K Weber, and D O Fürst
May 2006, Bioscience, biotechnology, and biochemistry,
W M Obermann, and U Plessmann, and K Weber, and D O Fürst
August 1978, Biochimica et biophysica acta,
W M Obermann, and U Plessmann, and K Weber, and D O Fürst
November 1977, The Journal of biological chemistry,
W M Obermann, and U Plessmann, and K Weber, and D O Fürst
July 1994, Biochemistry,
W M Obermann, and U Plessmann, and K Weber, and D O Fürst
August 1981, Nihon juigaku zasshi. The Japanese journal of veterinary science,
W M Obermann, and U Plessmann, and K Weber, and D O Fürst
February 1997, Cell structure and function,
W M Obermann, and U Plessmann, and K Weber, and D O Fürst
July 1982, The Journal of biological chemistry,
Copied contents to your clipboard!