Latency variability of responses to visual stimuli in cells of the cat's lateral geniculate nucleus. 1995

S M Lu, and W Guido, and J W Vaughan, and S M Sherman
Department of Neurobiology, State University of New York, Stony Brook 11794-5230, USA.

We constructed average histograms from responses evoked by flashing stimuli and noted previously described variations in the shape of the response profile, particularly with respect to sharpness of the peak. To express this variable, we measured the half-rise latency, which is the latency from stimulus onset required to reach half the maximum response. A short half-rise latency, which is characteristic of nonlagged cells, is associated with a brisk response and sharp peak; a long half-rise latency, characteristic of lagged cells, is associated with a sluggish response and broad peak. Nonlagged cells were readily seen; we attempted to identify cells with long latencies as lagged, but we were unable to do so unambiguously due to failure to observe lagged properties other than latency. We thus refer to these latter cells as having "lagged-like" responses to indicate that we are not certain whether these are indeed lagged cells. In addition to the histograms, we analyzed the individual response trials that were summed to create each histogram, and we used spike density analysis to estimate the initial response latency to the flashing spot for each trial. We found that lagged-like responses were associated with more variability in initial response latency than were nonlagged responses. We then employed an alignment procedure to eliminate latency variation from individual trials; that is, responses during individual trials were shifted in time as needed so that each had a latency equal to the average latency of all trials. We used these "aligned" trials to create a second, "aligned" response histogram for each cell. The alignment procedure had little effect on nonlagged responses, because these were already well aligned due to consistent response latencies amongst trials. For lagged-like responses, however, the alignment made a dramatic difference. The aligned histograms looked very much like those for nonlagged responses: the responses appeared brisk, with a sharply rising peak that was fairly high in amplitude. We thus conclude that the slow build up to a relatively low peak of firing of the lagged-like response histogram is not an accurate reflection of responses on single trials. Instead, the sluggishness of lagged-like responses inferred from average response histograms results from temporal smearing due to latency variability amongst trials. We thus conclude that there is relatively little difference in briskness between nonlagged and lagged-like responses to single stimuli.

UI MeSH Term Description Entries
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010775 Photic Stimulation Investigative technique commonly used during ELECTROENCEPHALOGRAPHY in which a series of bright light flashes or visual patterns are used to elicit brain activity. Stimulation, Photic,Visual Stimulation,Photic Stimulations,Stimulation, Visual,Stimulations, Photic,Stimulations, Visual,Visual Stimulations
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013788 Thalamus Paired bodies containing mostly GRAY MATTER and forming part of the lateral wall of the THIRD VENTRICLE of the brain. Thalamencephalon,Thalamencephalons
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor

Related Publications

S M Lu, and W Guido, and J W Vaughan, and S M Sherman
January 1979, Experimental brain research,
S M Lu, and W Guido, and J W Vaughan, and S M Sherman
August 1977, Brain research,
S M Lu, and W Guido, and J W Vaughan, and S M Sherman
December 1979, Experimental neurology,
S M Lu, and W Guido, and J W Vaughan, and S M Sherman
August 1991, Journal of neurophysiology,
S M Lu, and W Guido, and J W Vaughan, and S M Sherman
February 1972, The Tohoku journal of experimental medicine,
S M Lu, and W Guido, and J W Vaughan, and S M Sherman
January 1983, Biofizika,
S M Lu, and W Guido, and J W Vaughan, and S M Sherman
January 1994, Experimental brain research,
S M Lu, and W Guido, and J W Vaughan, and S M Sherman
January 1972, Experimental brain research,
S M Lu, and W Guido, and J W Vaughan, and S M Sherman
December 2015, Current biology : CB,
S M Lu, and W Guido, and J W Vaughan, and S M Sherman
November 1973, Electroencephalography and clinical neurophysiology,
Copied contents to your clipboard!