| D008081 |
Liposomes |
Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. |
Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome |
|
| D008564 |
Membrane Potentials |
The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). |
Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences |
|
| D010713 |
Phosphatidylcholines |
Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. |
Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline |
|
| D010718 |
Phosphatidylserines |
Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a SERINE moiety. |
Serine Phosphoglycerides,Phosphatidyl Serine,Phosphatidyl Serines,Phosphatidylserine,Phosphoglycerides, Serine,Serine, Phosphatidyl,Serines, Phosphatidyl |
|
| D002784 |
Cholesterol |
The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils. |
Epicholesterol |
|
| D004058 |
Diffusion |
The tendency of a gas or solute to pass from a point of higher pressure or concentration to a point of lower pressure or concentration and to distribute itself throughout the available space. Diffusion, especially FACILITATED DIFFUSION, is a major mechanism of BIOLOGICAL TRANSPORT. |
Diffusions |
|
| D001152 |
Arsenicals |
Inorganic or organic compounds that contain arsenic. |
Arsenic Compounds,Compounds, Arsenic |
|
| D013775 |
Tetraphenylborate |
An anionic compound that is used as a reagent for determination of potassium, ammonium, rubidium, and cesium ions. It also uncouples oxidative phosphorylation and forms complexes with biological materials, and is used in biological assays. |
Sodium Tetraphenylborate,Tetraphenylboron Sodium,Kalignost,Tetraphenylborate Sodium Salt,Tetraphenylborate, Ammonium Salt,Tetraphenylborate, Barium Salt (2:1),Tetraphenylborate, Potassium Salt,Tetraphenylboron,Ammonium Salt Tetraphenylborate,Potassium Salt Tetraphenylborate,Sodium Salt, Tetraphenylborate,Sodium, Tetraphenylboron,Tetraphenylborate, Sodium |
|