Characterization of myosin-IA and myosin-IB, two unconventional myosins associated with the Drosophila brush border cytoskeleton. 1995

N S Morgan, and M B Heintzelman, and M S Mooseker
Department of Genetics, School of Medicine, Yale University, New Haven, Connecticut 06520, USA.

The expression patterns of myosin-IA (MIA) and myosin-IB (MIB), two novel unconventional myosins from Drosophila melanogaster, have been characterized through immunoblot analysis and immunocytochemistry of embryos, larvae, and adults. The appearance and distribution of both proteins during embryogenesis is correlated with the formation of a brush border within the alimentary canal as documented at the ultrastructural level. MIA and MIB, both found predominantly at the basolateral domain of immature enterocytes, exhibit increased expression at the apical domain of differentiated enterocytes co-incident with microvillus assembly. Colocalization of MIA and MIB to larval and adult gut by confocal microscopy demonstrates distinct but overlapping subcellular distributions of these two proteins. In the larval brush border, MIA is enriched in the subapical terminal web domain whereas MIB is found predominantly in the apical microvillar domain. In the adult gut, MIA and MIB both exhibit a microvillar component as MIA attains a more apical position in addition to its previous terminal web locale. MIB is also found in egg chambers at both the basolateral and apical surfaces of the somatic follicle cells during oogenesis. MIA and MIB both demonstrate ATP-dependent extraction from the larval brush border cytoskeleton and exogenous F-actin, biochemical properties characteristic of functional myosins-I.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D007814 Larva Wormlike or grublike stage, following the egg in the life cycle of insects, worms, and other metamorphosing animals. Maggots,Tadpoles,Larvae,Maggot,Tadpole
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008871 Microvilli Minute projections of cell membranes which greatly increase the surface area of the cell. Brush Border,Striated Border,Border, Brush,Border, Striated,Borders, Brush,Borders, Striated,Brush Borders,Microvillus,Striated Borders
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D009866 Oogenesis The process of germ cell development in the female from the primordial germ cells through OOGONIA to the mature haploid ova (OVUM). Oogeneses
D010063 Ovum A mature haploid female germ cell extruded from the OVARY at OVULATION. Egg,Egg, Unfertilized,Ova,Eggs, Unfertilized,Unfertilized Egg,Unfertilized Eggs
D011679 Pupa An inactive stage between the larval and adult stages in the life cycle of INSECTA. Chrysalis,Pupae
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell

Related Publications

N S Morgan, and M B Heintzelman, and M S Mooseker
December 1994, Journal of cell science,
N S Morgan, and M B Heintzelman, and M S Mooseker
June 1994, Journal of molecular biology,
N S Morgan, and M B Heintzelman, and M S Mooseker
September 1993, The Journal of experimental zoology,
N S Morgan, and M B Heintzelman, and M S Mooseker
January 1999, Cell motility and the cytoskeleton,
N S Morgan, and M B Heintzelman, and M S Mooseker
January 2012, Proceedings of the National Academy of Sciences of the United States of America,
N S Morgan, and M B Heintzelman, and M S Mooseker
April 2013, International journal of cancer,
N S Morgan, and M B Heintzelman, and M S Mooseker
December 1997, Proceedings of the National Academy of Sciences of the United States of America,
N S Morgan, and M B Heintzelman, and M S Mooseker
January 1996, Journal of structural biology,
N S Morgan, and M B Heintzelman, and M S Mooseker
September 1979, The Journal of biological chemistry,
Copied contents to your clipboard!