Inhibition of proliferation in 8-week-old mdx mouse muscle fibroblasts in vitro. 1995

S Morin, and S de la Porte, and M Fiszman, and J Koenig
Laboratoire Neurobiologie Cellulaire, Université Bordeaux II, CNRS URA 1126, Talence, France.

Our purpose is to understand why mdx muscle does not show the progressive degeneration observed in human Duchenne muscular dystrophy (DMD) muscle. In the mouse, the regenerative process compensates for the necrosis of the muscle fibers, particularly during the acute phase of the disease (5-9 weeks). In DMD muscle, there is a gradual failure of the regenerative process and the muscle fibers are replaced by connective and fatty tissue. We propose that distinct properties of mdx and DMD muscle fibroblasts could be one of the reasons for the differences between the mdx and DMD phenotypes. We found that fibroblasts taken from human DMD and control muscle had similar in vitro proliferative capacities. The proliferation rate of mouse muscle fibroblasts decreased during the acute phase of the disease, and inhibition was complete in fibroblasts from 8-week-old mdx mice. Moreover, the medium conditioned by these cells inhibited fibroblast proliferation. The effect was specific for fibroblasts, since this conditioned medium stimulated myoblast proliferation, as did control fibroblast-conditioned medium. These results suggest that 8-week-old mdx mouse muscle fibroblasts produce an inhibitor of their own proliferation and a growth factor specific for myoblasts in vitro. If these factors are secreted in vivo, the growth inhibitory factory may stop fibroblast proliferation whereas the mitogenic activity could stimulate satellite cell proliferation, thus favouring muscle regeneration.

UI MeSH Term Description Entries
D008297 Male Males
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009137 Muscular Dystrophy, Animal MUSCULAR DYSTROPHY that occurs in VERTEBRATE animals. Animal Muscular Dystrophies,Animal Muscular Dystrophy,Dystrophies, Animal Muscular,Dystrophy, Animal Muscular,Muscular Dystrophies, Animal
D010751 Phosphopyruvate Hydratase A hydro-lyase that catalyzes the dehydration of 2-phosphoglycerate to form PHOSPHOENOLPYRUVATE. Several different isoforms of this enzyme exist, each with its own tissue specificity. Enolase,Neuron-Specific Enolase,2-Phospho-D-Glycerate Hydro-Lyase,2-Phospho-D-Glycerate Hydrolase,2-Phosphoglycerate Dehydratase,Enolase 2,Enolase 3,Muscle-Specific Enolase,Nervous System-Specific Enolase,Non-Neuronal Enolase,alpha-Enolase,beta-Enolase,gamma-Enolase,2 Phospho D Glycerate Hydro Lyase,2 Phospho D Glycerate Hydrolase,2 Phosphoglycerate Dehydratase,Dehydratase, 2-Phosphoglycerate,Enolase, Muscle-Specific,Enolase, Nervous System-Specific,Enolase, Neuron-Specific,Enolase, Non-Neuronal,Hydratase, Phosphopyruvate,Hydro-Lyase, 2-Phospho-D-Glycerate,Muscle Specific Enolase,Nervous System Specific Enolase,Neuron Specific Enolase,Non Neuronal Enolase,System-Specific Enolase, Nervous,alpha Enolase,beta Enolase,gamma Enolase
D002038 Bungarotoxins Neurotoxic proteins from the venom of the banded or Formosan krait (Bungarus multicinctus, an elapid snake). alpha-Bungarotoxin blocks nicotinic acetylcholine receptors and has been used to isolate and study them; beta- and gamma-bungarotoxins act presynaptically causing acetylcholine release and depletion. Both alpha and beta forms have been characterized, the alpha being similar to the large, long or Type II neurotoxins from other elapid venoms. alpha-Bungarotoxin,beta-Bungarotoxin,kappa-Bungarotoxin,alpha Bungarotoxin,beta Bungarotoxin,kappa Bungarotoxin
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002648 Child A person 6 to 12 years of age. An individual 2 to 5 years old is CHILD, PRESCHOOL. Children
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast

Related Publications

S Morin, and S de la Porte, and M Fiszman, and J Koenig
January 1995, Journal of cell science,
S Morin, and S de la Porte, and M Fiszman, and J Koenig
May 2003, Journal of applied physiology (Bethesda, Md. : 1985),
S Morin, and S de la Porte, and M Fiszman, and J Koenig
February 1995, Muscle & nerve,
S Morin, and S de la Porte, and M Fiszman, and J Koenig
August 2018, Journal of anatomy,
S Morin, and S de la Porte, and M Fiszman, and J Koenig
June 1997, The American journal of physiology,
S Morin, and S de la Porte, and M Fiszman, and J Koenig
July 1992, Muscle & nerve,
S Morin, and S de la Porte, and M Fiszman, and J Koenig
May 2006, Human molecular genetics,
S Morin, and S de la Porte, and M Fiszman, and J Koenig
June 2017, Chemical senses,
S Morin, and S de la Porte, and M Fiszman, and J Koenig
October 2015, Journal of toxicologic pathology,
S Morin, and S de la Porte, and M Fiszman, and J Koenig
January 2024, Pediatric dermatology,
Copied contents to your clipboard!