P2 purinergic receptors for diadenosine polyphosphates in the nervous system. 1995

J Pintor, and M T Miras-Portugal
E. U. Optica, Madrid, Spain.

1. The actions of diadenosine polyphosphates, diadenosine tetraphosphate (Ap4A), diadenosine pentaphosphate (Ap5A) and diadenosine hexaphosphate (Ap6A) in the nervous system have been reviewed. 2. In the peripheral nervous system, diadenosine polyphosphates bind to P2-purinergic receptors such as the P2Y in chromaffin cells and Torpedo synaptosomes, P2X in vas deferens and urinary bladder and also Torpedo synaptosomes and P2U in endothelial chromaffin cells. 3. In the central nervous system ApnA compounds can act through P2X-purinoceptors opening cation channels in nodose ganglion neurones. Diadenosine polyphosphates bind to a P2d-purinergic receptor in rat brain synaptic terminals and hippocampus, linked to protein kinase C (PKC) activation. 4. P4-purinoceptors are specific receptors for diadenosine polyphosphates, coupled to the Ca2+ influx, in the central synapses. This purinoceptor is not activated by ATP and synthetic analogs. The P4-purinoceptor could act as a positive modulator of the synaptic transmission, giving even more importance to diadenosine polyphosphates as neurotransmitters.

UI MeSH Term Description Entries
D008297 Male Males
D009420 Nervous System The entire nerve apparatus, composed of a central part, the brain and spinal cord, and a peripheral part, the cranial and spinal nerves, autonomic ganglia, and plexuses. (Stedman, 26th ed) Nervous Systems,System, Nervous,Systems, Nervous
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015226 Dinucleoside Phosphates A group of compounds which consist of a nucleotide molecule to which an additional nucleoside is attached through the phosphate molecule(s). The nucleotide can contain any number of phosphates. Bis(5'-Nucleosidyl)Oligophosphates,Bis(5'-Nucleosidyl)Phosphates,Deoxydinucleoside Phosphates,Dinucleoside Diphosphates,Dinucleoside Monophosphates,Dinucleoside Oligophosphates,Dinucleoside Tetraphosphates,Dinucleoside Triphosphates,Bis(5'-Nucleosidyl)Tetraphosphate,Dinucleoside Polyphosphates,Diphosphates, Dinucleoside,Monophosphates, Dinucleoside,Oligophosphates, Dinucleoside,Phosphates, Deoxydinucleoside,Phosphates, Dinucleoside,Polyphosphates, Dinucleoside,Tetraphosphates, Dinucleoside,Triphosphates, Dinucleoside
D018048 Receptors, Purinergic P2 A class of cell surface receptors for PURINES that prefer ATP or ADP over ADENOSINE. P2 purinergic receptors are widespread in the periphery and in the central and peripheral nervous system. ADP Receptors,ATP Receptors,P2 Purinoceptors,Purinergic P2 Receptors,Receptors, ADP,Receptors, ATP,ADP Receptor,ATP Receptor,P2 Purinoceptor,Receptor, Purinergic P2,P2 Receptor, Purinergic,P2 Receptors, Purinergic,Purinergic P2 Receptor,Purinoceptor, P2,Purinoceptors, P2,Receptor, ADP,Receptor, ATP

Related Publications

J Pintor, and M T Miras-Portugal
March 2016, Naunyn-Schmiedeberg's archives of pharmacology,
J Pintor, and M T Miras-Portugal
April 1999, Cardiovascular research,
J Pintor, and M T Miras-Portugal
January 2002, European journal of pharmacology,
J Pintor, and M T Miras-Portugal
January 2004, Current topics in medicinal chemistry,
J Pintor, and M T Miras-Portugal
June 2006, Pharmacology & therapeutics,
J Pintor, and M T Miras-Portugal
July 1996, British journal of pharmacology,
J Pintor, and M T Miras-Portugal
January 2004, European journal of pharmacology,
J Pintor, and M T Miras-Portugal
April 1993, The Journal of pharmacology and experimental therapeutics,
J Pintor, and M T Miras-Portugal
April 1991, American journal of respiratory cell and molecular biology,
J Pintor, and M T Miras-Portugal
January 2021, Frontiers in pharmacology,
Copied contents to your clipboard!