Roles of topoisomerase IV and DNA gyrase in DNA unlinking during replication in Escherichia coli. 1995

E L Zechiedrich, and N R Cozzarelli
Department of Molecular and Cell Biology, University of California, Berkeley 94720-3204, USA.

For a cell to complete DNA replication, every link between the Watson-Crick strands must be removed by topoisomerases. Previously, we reported that the inhibition of topoisomerase IV (topo IV) leads to the accumulation of catenated plasmid replicons to a steady-state level of approximately 10%. Using pulse labeling with [3H]thymidine in Escherichia coli, we have found that in the absence of topo IV activity, nearly all newly synthesized plasmid DNA is catenated. Pulse-chase protocols revealed that catenanes are metabolized even in the absence of topo IV and that the residual turnover is carried out by DNA gyrase at a rate of approximately 0.01/sec. Using extremely short pulse-labeling times, we identified significant amounts of replication catenanes in wild-type cells. The rate of catenane unlinking in wild-type cells by the combined activities of topo IV and DNA gyrase was approximately 1/sec. Therefore, gyrase is 100-fold less efficient than topo IV in plasmid replicon decatenation in vivo. This may explain why a fully functional gyrase cannot prevent the catenation of newly synthesized plasmid DNA and the partition phenotype of topo IV mutants. We conclude that catenanes are kinetic intermediates in DNA replication and that the essential role of topo IV is to unlink daughter replicons.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D004250 DNA Topoisomerases, Type II DNA TOPOISOMERASES that catalyze ATP-dependent breakage of both strands of DNA, passage of the unbroken strands through the breaks, and rejoining of the broken strands. These enzymes bring about relaxation of the supercoiled DNA and resolution of a knotted circular DNA duplex. DNA Topoisomerase (ATP-Hydrolysing),DNA Topoisomerase II,DNA Topoisomerase II alpha,DNA Topoisomerase II beta,DNA Type 2 Topoisomerase,TOP2A Protein,TOP2B Protein,Topoisomerase II,Topoisomerase II alpha,Topoisomerase II beta,Type II DNA Topoisomerase,alpha, Topoisomerase II,beta, Topoisomerase II
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D027101 DNA Topoisomerase IV A bacterial DNA topoisomerase II that catalyzes ATP-dependent breakage of both strands of DNA, passage of the unbroken strands through the breaks, and rejoining of the broken strands. Topoisomerase IV binds to DNA as a heterotetramer consisting 2 parC and 2 parE subunits. Topoisomerase IV is a decatenating enzyme that resolves interlinked daughter chromosomes following DNA replication. parC Protein,parE Protein,Topo IV,Topoisomerase IV,Topoisomerase IV Subunit A,Topoisomerase IV Subunit B,parC Gene Product,parC Gene Product, Topo IV,parE Gene Product,parE Gene Product, Topo IV,Topoisomerase IV, DNA

Related Publications

E L Zechiedrich, and N R Cozzarelli
December 1996, The Journal of biological chemistry,
E L Zechiedrich, and N R Cozzarelli
November 1994, Antimicrobial agents and chemotherapy,
E L Zechiedrich, and N R Cozzarelli
September 2011, The Journal of antimicrobial chemotherapy,
E L Zechiedrich, and N R Cozzarelli
December 1979, Proceedings of the National Academy of Sciences of the United States of America,
E L Zechiedrich, and N R Cozzarelli
October 1986, Journal of bacteriology,
E L Zechiedrich, and N R Cozzarelli
March 2011, International journal of antimicrobial agents,
Copied contents to your clipboard!