Polymorphic peptide transporters in MHC class I monomorphic Syrian hamster. 1995

M Lobigs, and H S Rothenfluh, and R V Blanden, and A Müllbacher
Division of Cell Biology, John Curtin School of Medical Research, Australian National University, P. O. Box 334, Canberra, ACT 2601, Australia.

We have already shown that in species with highly polymorphic major histocompatibility complex (MHC) class I molecules (human, mouse) no functional polymorphism of the peptide transporters TAP1 and TAP2 is detectable (Lobigs and Müllbacher 1993). Investigating the antigen-presentation machinery of the class I MHC monomorphic Syrian hamster using mouse MHC class I expression via recombinant vaccinia viruses (VV) we found that six hamster cell lines fall into two phenotypic classes. four cell lines (HaK, FF, MF-2, and HT-1) showed no defect in expressing four different H2 class I molecules (Kk, Kd, Kb, Dd) and the appropriate VV peptide recognized by mouse VV-immune cytotoxic T (Tc) cells on the cell surface. Two cell lines (BHK-21 and NIL-2) expressed Dd and Kb in association with VV peptides as recognized by VV-immune, H2-restricted Tc cells but not Kk and Kd. However, Kd was expressed on the cell surface, as shown by fluorescence-activated cell sorter (FACS) analysis and alloreactive Tc-cell recognition. Kk is only surface-expressed in these two cell lines when superinfected with two VV recombinants encoding rat TAP1 (VV-mtp1) and TAP2 (VV-mtp2). Superinfection with VV-mtp1 and VV-mtp2 rendered both cell lines, after infection with either VV-Kk and VV-Kd, susceptible to lysis by either Kk- or Kd-restricted VV-immune Tc cells. Thus Syrian hamster cell lines express functionally polymorphic peptide transporters. The TAP2 gene from FF cells was cloned and sequenced; comparison with human, mouse, and rat TAP2 sequences show 78%, 88% and 87% similarity, respectively.

UI MeSH Term Description Entries
D008647 Mesocricetus A genus in the order Rodentia and family Cricetidae. One species, Mesocricetus auratus or golden hamster is widely used in biomedical research. Hamsters, Golden,Hamsters, Golden Syrian,Hamsters, Syrian,Mesocricetus auratus,Syrian Golden Hamster,Syrian Hamster,Golden Hamster,Golden Hamster, Syrian,Golden Hamsters,Golden Syrian Hamsters,Hamster, Golden,Hamster, Syrian,Hamster, Syrian Golden,Syrian Hamsters
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D008808 Mice, Inbred CBA An inbred strain of mouse that is widely used in BIOMEDICAL RESEARCH. Mice, CBA,Mouse, CBA,Mouse, Inbred CBA,CBA Mice,CBA Mice, Inbred,CBA Mouse,CBA Mouse, Inbred,Inbred CBA Mice,Inbred CBA Mouse
D008809 Mice, Inbred C3H An inbred strain of mouse that is used as a general purpose strain in a wide variety of RESEARCH areas including CANCER; INFECTIOUS DISEASES; sensorineural, and cardiovascular biology research. Mice, C3H,Mouse, C3H,Mouse, Inbred C3H,C3H Mice,C3H Mice, Inbred,C3H Mouse,C3H Mouse, Inbred,Inbred C3H Mice,Inbred C3H Mouse
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011110 Polymorphism, Genetic The regular and simultaneous occurrence in a single interbreeding population of two or more discontinuous genotypes. The concept includes differences in genotypes ranging in size from a single nucleotide site (POLYMORPHISM, SINGLE NUCLEOTIDE) to large nucleotide sequences visible at a chromosomal level. Gene Polymorphism,Genetic Polymorphism,Polymorphism (Genetics),Genetic Polymorphisms,Gene Polymorphisms,Polymorphism, Gene,Polymorphisms (Genetics),Polymorphisms, Gene,Polymorphisms, Genetic
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D006183 H-2 Antigens The major group of transplantation antigens in the mouse. H2 Antigens,Antigens, H-2,Antigens, H2,H 2 Antigens

Related Publications

M Lobigs, and H S Rothenfluh, and R V Blanden, and A Müllbacher
January 1984, Immunogenetics,
M Lobigs, and H S Rothenfluh, and R V Blanden, and A Müllbacher
November 1990, Journal of immunology (Baltimore, Md. : 1950),
M Lobigs, and H S Rothenfluh, and R V Blanden, and A Müllbacher
May 1991, Journal of immunology (Baltimore, Md. : 1950),
M Lobigs, and H S Rothenfluh, and R V Blanden, and A Müllbacher
January 2013, Methods in molecular biology (Clifton, N.J.),
M Lobigs, and H S Rothenfluh, and R V Blanden, and A Müllbacher
April 1994, Nature,
M Lobigs, and H S Rothenfluh, and R V Blanden, and A Müllbacher
July 1986, Journal of immunology (Baltimore, Md. : 1950),
M Lobigs, and H S Rothenfluh, and R V Blanden, and A Müllbacher
April 1991, Nature,
M Lobigs, and H S Rothenfluh, and R V Blanden, and A Müllbacher
July 2003, Journal of immunology (Baltimore, Md. : 1950),
M Lobigs, and H S Rothenfluh, and R V Blanden, and A Müllbacher
July 1996, Trends in cell biology,
M Lobigs, and H S Rothenfluh, and R V Blanden, and A Müllbacher
September 1999, Tissue antigens,
Copied contents to your clipboard!