Effects of Escherichia coli dnaE antimutator alleles in a proofreading-deficient mutD5 strain. 1995

I J Fijalkowska, and R M Schaaper
Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA.

We have previously isolated seven mutants of Escherichia coli which replicate their DNA with increased fidelity. These mutants were isolated as suppressors of the elevated mutability of a mismatch-repair-defective mutL strain. Each mutant was shown to contain a single amino acid substitution in the dnaE gene product, the alpha (i.e., polymerase) subunit of DNA polymerase III holoenzyme responsible for replicating the E. coli chromosome. The mechanism(s) by which these antimutators exert their effect is of interest. Here, we have examined the effects of the antimutator alleles in a mutD5 mutator strain. This strain carries a mutation in the dnaQ gene, which results in defective exonucleolytic proofreading. Our results show that dnaE mutations also confer a strong antimutator phenotype in this background, the effects being generally much greater than those observed previously in the mutL background. The results suggest that the dnaE antimutator alleles can exert their effect independently of exonucleolytic proofreading activity. The large magnitude of the antimutator effects in the mutD5 background can be ascribed, at least in part, to the (additional) restoration of DNA mismatch repair, which is generally impaired in mutD5 strains because of error saturation. The high mutability of mutD5 strains was exploited to isolate a strong new dnaE antimutator allele on the basis of its ability to suppress the high reversion rate of an A.T-->T.A transversion in this background. A model suggesting how the dnaE antimutator alleles might exert their effects in proofreading-proficient and -deficient backgrounds is presented.

UI MeSH Term Description Entries
D008957 Models, Genetic Theoretical representations that simulate the behavior or activity of genetic processes or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Genetic Models,Genetic Model,Model, Genetic
D004258 DNA Polymerase III A DNA-dependent DNA polymerase characterized in E. coli and other lower organisms but may be present in higher organisms. Use also for a more complex form of DNA polymerase III designated as DNA polymerase III* or pol III* which is 15 times more active biologically than DNA polymerase I in the synthesis of DNA. This polymerase has both 3'-5' and 5'-3' exonuclease activities, is inhibited by sulfhydryl reagents, and has the same template-primer dependence as pol II. DNA Polymerase delta,DNA-Dependent DNA Polymerase III,DNA Pol III,DNA Dependent DNA Polymerase III,Polymerase III, DNA,Polymerase delta, DNA
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000070956 MutL Proteins DNA repair proteins that include the bacterial MutL protein and its eukaryotic homologs. They consist of a conserved N-terminal region with weak ATPase activity, an endonuclease motif, and a C-terminal domain that forms MutL homodimers or heterodimers between MLH1 and the PMS1, MISMATCH REPAIR ENDONUCLEASE PMS2; or MLH3 proteins. These complexes function in DNA repair pathways, primarily DNA MISMATCH REPAIR, where MutL/MLH1 and the MUTS DNA MISMATCH-BINDING PROTEIN are targeted to damaged DNA. MutL Homologs
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine
D000483 Alleles Variant forms of the same gene, occupying the same locus on homologous CHROMOSOMES, and governing the variants in production of the same gene product. Allelomorphs,Allele,Allelomorph
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D013489 Suppression, Genetic Mutation process that restores the wild-type PHENOTYPE in an organism possessing a mutationally altered GENOTYPE. The second "suppressor" mutation may be on a different gene, on the same gene but located at a distance from the site of the primary mutation, or in extrachromosomal genes (EXTRACHROMOSOMAL INHERITANCE). Suppressor Mutation,Genetic Suppression,Genetic Suppressions,Mutation, Suppressor,Mutations, Suppressor,Suppressions, Genetic,Suppressor Mutations
D016296 Mutagenesis Process of generating a genetic MUTATION. It may occur spontaneously or be induced by MUTAGENS. Mutageneses

Related Publications

I J Fijalkowska, and R M Schaaper
March 1992, Journal of bacteriology,
I J Fijalkowska, and R M Schaaper
August 1989, Journal of bacteriology,
I J Fijalkowska, and R M Schaaper
January 1983, Molecular & general genetics : MGG,
I J Fijalkowska, and R M Schaaper
January 1974, Molecular & general genetics : MGG,
I J Fijalkowska, and R M Schaaper
September 2021, Molecular microbiology,
I J Fijalkowska, and R M Schaaper
October 1989, The EMBO journal,
I J Fijalkowska, and R M Schaaper
July 1983, Journal of molecular biology,
Copied contents to your clipboard!