The reaction of trimethylamine dehydrogenase with electron transferring flavoprotein. 1995

L Huang, and R J Rohlfs, and R Hille
Department of Medical Biochemistry, Ohio State University, Columbus 43210, USA.

The kinetics of electron transfer between trimethylamine dehydrogenase (TMADH) and its physiological acceptor, electron transferring flavoprotein (ETF), has been studied by static and stopped-flow absorbance measurements. The results demonstrate that reducing equivalents are transferred from TMADH to ETF solely through the 4Fe/4S center of the former. The intrinsic limiting rate constant (klim) and dissociation constant (Kd) for electron transfer from the reduced 4Fe/4S center of TMADH to ETF are about 172 s-1 and 10 microM, respectively. The reoxidation of fully reduced TMADH with an excess of ETF is markedly biphasic, indicating that partial oxidation of the iron-sulfur center in 1-electron reduced enzyme significantly reduces the rate of electron transfer out of the enzyme in these forms. The interaction of the two unpaired electron spins of flavin semiquinone and reduced 4Fe/4S center in 2-electron reduced TMADH, on the other hand, does not significantly slow down the electron transfer from the 4Fe/4S center to ETF. From a comparison of the limiting rate constants for the oxidative and reductive half-reactions, we conclude that electron transfer from TMADH to ETF is not rate-limiting during steady-state turnover. The overall kinetics of the oxidative half-reaction are not significantly affected by high salt concentrations, indicating that electrostatic forces are not involved in the formation and decay of reduced TMADH-oxidized ETF complex.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010089 Oxidoreductases, N-Demethylating N-Demethylase,N-Demethylases,Oxidoreductases, N Demethylating,Demethylating Oxidoreductases, N,N Demethylase,N Demethylases,N Demethylating Oxidoreductases,N-Demethylating Oxidoreductases
D010659 Phenylhydrazines Diazo derivatives of aniline, used as a reagent for sugars, ketones, and aldehydes. (Dorland, 28th ed)
D004579 Electron Transport The process by which ELECTRONS are transported from a reduced substrate to molecular OXYGEN. (From Bennington, Saunders Dictionary and Encyclopedia of Laboratory Medicine and Technology, 1984, p270) Respiratory Chain,Chain, Respiratory,Chains, Respiratory,Respiratory Chains,Transport, Electron
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D005420 Flavoproteins Flavoprotein
D013053 Spectrophotometry The art or process of comparing photometrically the relative intensities of the light in different parts of the spectrum.
D044927 Electron-Transferring Flavoproteins Flavoproteins that serve as specific electron acceptors for a variety of DEHYDROGENASES. They participate in the transfer of electrons to a variety of redox acceptors that occur in the respiratory chain. ET Flavoprotein,Electron Transfer Flavoprotein,Electron-Transferring Flavoprotein,Electron Transferring Flavoprotein,Electron Transferring Flavoproteins,Flavoprotein, ET,Flavoprotein, Electron Transfer,Flavoprotein, Electron-Transferring,Flavoproteins, Electron-Transferring,Transfer Flavoprotein, Electron

Related Publications

L Huang, and R J Rohlfs, and R Hille
January 2000, Sub-cellular biochemistry,
L Huang, and R J Rohlfs, and R Hille
February 1999, Biochemical Society transactions,
L Huang, and R J Rohlfs, and R Hille
May 2005, The Journal of biological chemistry,
L Huang, and R J Rohlfs, and R Hille
May 1999, The Journal of biological chemistry,
Copied contents to your clipboard!