The modulation of Ca2+ binding to sarcoplasmic reticulum ATPase by ATP analogues is pH-dependent. 1995

E Mintz, and A M Mata, and V Forge, and M Passafiume, and F Guillain
Département de Biologie Cellulaire et Moléculaire, Centre d'Etudes de Saclay, Gif-sur-Yvette, France.

Excess ATP is known to enhance Ca(2+)-ATPase activity and, among other effects, to accelerate the Ca2+ binding reaction. In previous work, we studied the pH dependence of this reaction and proposed a 3H+/2Ca2+ exchange at the transport sites, in agreement with the H+/Ca2+ counter transport. Here we studied the effect of ADP and nonhydrolyzable ATP analogues on the Ca2+ binding reaction at various pH values. At pH 6, where Ca2+ binding is monophasic and slow, ADP, adenosine 5'-(beta,gamma-methylene)triphosphate (AMP-PCP), or adenyl-5'-yl imidodiphosphate (AMPPNP) increased the Ca2+ binding rate constant 20-fold. At pH 7 and 8, where Ca2+ binding is biphasic, the nucleotides induce fast and monophasic Ca2+ binding. At pH 7, AMP-PCP accelerated Ca2+ binding with an apparent dissociation constant of 10 microM. At acidic pH, ADP, AMPPCP, or AMPPNP increased the equilibrium affinity of Ca2+ for ATPase, whereas at alkaline pH, these nucleotides had no effect. At pH 5.5, AMPPCP increased equilibrium Ca2+ binding with an apparent dissociation constant of 1 microM.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D011522 Protons Stable elementary particles having the smallest known positive charge, found in the nuclei of all elements. The proton mass is less than that of a neutron. A proton is the nucleus of the light hydrogen atom, i.e., the hydrogen ion. Hydrogen Ions,Hydrogen Ion,Ion, Hydrogen,Ions, Hydrogen,Proton
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000244 Adenosine Diphosphate Adenosine 5'-(trihydrogen diphosphate). An adenine nucleotide containing two phosphate groups esterified to the sugar moiety at the 5'-position. ADP,Adenosine Pyrophosphate,Magnesium ADP,MgADP,Adenosine 5'-Pyrophosphate,5'-Pyrophosphate, Adenosine,ADP, Magnesium,Adenosine 5' Pyrophosphate,Diphosphate, Adenosine,Pyrophosphate, Adenosine
D000252 Calcium-Transporting ATPases Cation-transporting proteins that utilize the energy of ATP hydrolysis for the transport of CALCIUM. They differ from CALCIUM CHANNELS which allow calcium to pass through a membrane without the use of energy. ATPase, Calcium,Adenosinetriphosphatase, Calcium,Ca(2+)-Transporting ATPase,Calcium ATPase,Calcium Adenosinetriphosphatase,Adenosine Triphosphatase, Calcium,Ca2+ ATPase,Calcium-ATPase,ATPase, Ca2+,ATPases, Calcium-Transporting,Calcium Adenosine Triphosphatase,Calcium Transporting ATPases,Triphosphatase, Calcium Adenosine
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000266 Adenylyl Imidodiphosphate 5'-Adenylic acid, monoanhydride with imidodiphosphoric acid. An analog of ATP, in which the oxygen atom bridging the beta to the gamma phosphate is replaced by a nitrogen atom. It is a potent competitive inhibitor of soluble and membrane-bound mitochondrial ATPase and also inhibits ATP-dependent reactions of oxidative phosphorylation. Adenyl Imidodiphosphate,gamma-Imino-ATP,AMP-PNP,AMPPNP,ATP(beta,gamma-NH),Adenosine 5'-(beta,gamma-Imino)triphosphate,Adenylimidodiphosphate,Adenylylimidodiphosphate,Mg AMP-PNP,Mg-5'-Adenylylimidodiphosphate,beta,gamma-imido-ATP,gamma-Imido-ATP,AMP-PNP, Mg,Imidodiphosphate, Adenyl,Imidodiphosphate, Adenylyl,Mg 5' Adenylylimidodiphosphate,Mg AMP PNP,beta,gamma imido ATP,gamma Imido ATP,gamma Imino ATP
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

E Mintz, and A M Mata, and V Forge, and M Passafiume, and F Guillain
April 2003, Annals of the New York Academy of Sciences,
E Mintz, and A M Mata, and V Forge, and M Passafiume, and F Guillain
September 1991, The Journal of biological chemistry,
E Mintz, and A M Mata, and V Forge, and M Passafiume, and F Guillain
January 1988, Progress in clinical and biological research,
E Mintz, and A M Mata, and V Forge, and M Passafiume, and F Guillain
February 1982, The Journal of biological chemistry,
E Mintz, and A M Mata, and V Forge, and M Passafiume, and F Guillain
February 1990, Biochimica et biophysica acta,
E Mintz, and A M Mata, and V Forge, and M Passafiume, and F Guillain
January 1988, Methods in enzymology,
E Mintz, and A M Mata, and V Forge, and M Passafiume, and F Guillain
April 2003, Annals of the New York Academy of Sciences,
E Mintz, and A M Mata, and V Forge, and M Passafiume, and F Guillain
October 2014, The Journal of biological chemistry,
E Mintz, and A M Mata, and V Forge, and M Passafiume, and F Guillain
September 1985, The Journal of biological chemistry,
E Mintz, and A M Mata, and V Forge, and M Passafiume, and F Guillain
January 1998, Life sciences,
Copied contents to your clipboard!