Platelet and monoclonal antibody binding to fibrinogen adsorbed on glow-discharge-deposited polymers. 1995

D Kiaei, and A S Hoffman, and T A Horbett, and K R Lew
Center for Bioengineering, University of Washington, Seattle 98195, USA.

The state of fibrinogen adsorbed on untreated and glow-discharge-treated surfaces was examined by measuring platelet adhesion, monoclonal antibody (mAb) binding, the amount of fibrinogen adsorbed, and the amount of adsorbed fibrinogen which could be eluted with sodium dodecyl sulfate (SDS). Tetrafluoroethylene (TFE) glow-discharge-treated polymers have a lower surface free energy (in air) and retain a larger fraction of adsorbed fibrinogen than untreated surfaces after SDS elution. Platelet adhesion was lowest on the TFE-treated surfaces which retain the highest amounts of fibrinogen after SDS elution. Fibrinogen may undergo unfolding or spreading on the TFE-treated surfaces to minimize interfacial free energy (in water) and maximize protein-surface interactions. When it is adsorbed on the TFE-treated surfaces, fibrinogen evidently assumes a state which somehow prevents its recognition and binding by platelet receptors. Monoclonal antibodies that bind to the three regions in fibrinogen thought to be involved in platelet adhesion were therefore used to detect changes in adsorbed fibrinogen. These regions and the antibodies which bind to them are: the COOH-terminal of the gamma-chain, mAb M1; the RGD peptide sequence at A alpha 95-98, mAb R1; the RGD sequence at A alpha 572-575, mAb R2. For fibrinogen adsorbed on the untreated or TFE-treated surfaces, M1 and R2 binding was relatively high compared to background, while R1 binding was low. However, the amount of binding of each mAb to fibrinogen adsorbed on the TFE-treated surfaces was equal to or greater than fibrinogen adsorbed to the untreated surfaces. Therefore, antibody-detectable changes in the platelet binding regions of adsorbed fibrinogen that might have been caused by conformational or orientational rearrangements were not observed for the TFE-treated surfaces. The data suggest that the tight binding of fibrinogen on a surface may directly affect the ability of the fibrinogen to interact with the platelet receptors--i.e., that fibrinogen must be loosely held to facilitate maximal interaction with platelet receptors.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D010973 Platelet Adhesiveness The process whereby PLATELETS adhere to something other than platelets, e.g., COLLAGEN; BASEMENT MEMBRANE; MICROFIBRILS; or other "foreign" surfaces. Adhesiveness, Platelet,Adhesivenesses, Platelet,Platelet Adhesivenesses
D011108 Polymers Compounds formed by the joining of smaller, usually repeating, units linked by covalent bonds. These compounds often form large macromolecules (e.g., BIOPOLYMERS; PLASTICS). Polymer
D001798 Blood Proteins Proteins that are present in blood serum, including SERUM ALBUMIN; BLOOD COAGULATION FACTORS; and many other types of proteins. Blood Protein,Plasma Protein,Plasma Proteins,Serum Protein,Serum Proteins,Protein, Blood,Protein, Plasma,Protein, Serum,Proteins, Blood,Proteins, Plasma,Proteins, Serum
D003429 Cross Reactions Serological reactions in which an antiserum against one antigen reacts with a non-identical but closely related antigen. Cross Reaction,Reaction, Cross,Reactions, Cross
D005340 Fibrinogen Plasma glycoprotein clotted by thrombin, composed of a dimer of three non-identical pairs of polypeptide chains (alpha, beta, gamma) held together by disulfide bonds. Fibrinogen clotting is a sol-gel change involving complex molecular arrangements: whereas fibrinogen is cleaved by thrombin to form polypeptides A and B, the proteolytic action of other enzymes yields different fibrinogen degradation products. Coagulation Factor I,Factor I,Blood Coagulation Factor I,gamma-Fibrinogen,Factor I, Coagulation,gamma Fibrinogen
D005466 Fluorocarbons Liquid perfluorinated carbon compounds which may or may not contain a hetero atom such as nitrogen, oxygen or sulfur, but do not contain another halogen or hydrogen atom. This concept includes fluorocarbon emulsions, and fluorocarbon blood substitutes. Perfluorinated and related polyfluorinated chemicals are referred to as PFAS and are defined as chemicals with at least two adjacent carbon atoms, where one carbon is fully fluorinated and the other is at least partially fluorinated. Fluorocarbon,Fluorocarbon Emulsion,Fluorocarbon Emulsions,Fluorotelomer Phosphate Esters,N-Alkyl Perfluoroalkyl Sulfonamido Carboxylates,PFAS Per- and Polyfluoroalkyl Substances,PFC Perfluorinated Chemicals,PFECAs Perfluoropolyether Carboxylic Acids,Per- and Polyfluoroalkyl Substances,Perfluoroalkane Sulfonamides,Perfluoroalkyl Carboxylates,Perfluoroalkyl Ether Carboxylates,Perfluoroalkyl Polyether Carboxylates,Perfluorocarbon,Perfluorocarbons,Perfluoropolyether Carboxylic Acids,Polyfluorocarbons,Fluorinated Telomer Alcohols,Fluoro-Telomer Alcohols,Polyfluorinated Telomer Alcohols,Telomer Fluorocarbons,Acids, Perfluoropolyether Carboxylic,Alcohols, Fluorinated Telomer,Alcohols, Fluoro-Telomer,Alcohols, Polyfluorinated Telomer,Carboxylates, Perfluoroalkyl,Carboxylates, Perfluoroalkyl Ether,Carboxylates, Perfluoroalkyl Polyether,Carboxylic Acids, Perfluoropolyether,Chemicals, PFC Perfluorinated,Emulsion, Fluorocarbon,Emulsions, Fluorocarbon,Esters, Fluorotelomer Phosphate,Ether Carboxylates, Perfluoroalkyl,Fluoro Telomer Alcohols,Fluorocarbons, Telomer,N Alkyl Perfluoroalkyl Sulfonamido Carboxylates,PFAS Per and Polyfluoroalkyl Substances,Per and Polyfluoroalkyl Substances,Perfluorinated Chemicals, PFC,Phosphate Esters, Fluorotelomer,Polyether Carboxylates, Perfluoroalkyl,Sulfonamides, Perfluoroalkane,Telomer Alcohols, Fluorinated,Telomer Alcohols, Polyfluorinated
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000268 Adhesiveness A property of the surface of an object that makes it stick to another surface. Adhesivenesses
D000327 Adsorption The adhesion of gases, liquids, or dissolved solids onto a surface. It includes adsorptive phenomena of bacteria and viruses onto surfaces as well. ABSORPTION into the substance may follow but not necessarily. Adsorptions

Related Publications

D Kiaei, and A S Hoffman, and T A Horbett, and K R Lew
January 1994, Journal of biomaterials science. Polymer edition,
D Kiaei, and A S Hoffman, and T A Horbett, and K R Lew
September 2000, Journal of biomedical materials research,
D Kiaei, and A S Hoffman, and T A Horbett, and K R Lew
January 2004, Journal of biomaterials science. Polymer edition,
D Kiaei, and A S Hoffman, and T A Horbett, and K R Lew
January 1990, Journal of biomaterials science. Polymer edition,
D Kiaei, and A S Hoffman, and T A Horbett, and K R Lew
January 1996, Journal of biomaterials science. Polymer edition,
D Kiaei, and A S Hoffman, and T A Horbett, and K R Lew
January 2001, Journal of biomaterials science. Polymer edition,
D Kiaei, and A S Hoffman, and T A Horbett, and K R Lew
April 1991, Journal of biomedical materials research,
D Kiaei, and A S Hoffman, and T A Horbett, and K R Lew
December 1994, Thrombosis and haemostasis,
Copied contents to your clipboard!