Hypoxia-induced electrical changes in striatal neurons. 1995

P Calabresi, and A Pisani, and N B Mercuri, and G Bernardi
Clinical Neurologica, Dip. Sanità, Università di Roma Tor Vergata, Italy.

We have studied the effects of hypoxia on the membrane properties of striatal neurons intracellularly recorded from a corticostriatal slice preparation. Brief (2-10 min) periods of hypoxia produced reversible membrane depolarizations. Longer periods of hypoxia (12-20 min) produced irreversible membrane depolarizations. In voltage-clamp experiments, hypoxia caused an inward current coupled with an increased membrane conductance. Tetrodotoxin or low calcium (Ca2+)-high magnesium-containing solutions blocked synaptic transmission, but they did not reduce the hypoxia-induced electrical changes. Antagonists of excitatory amino acid (EAA) receptors failed to affect the electrical effects caused by oxygen (O2) deprivation. In low sodium (Na+)-containing solutions the hypoxia-induced inward current was largely reduced. Blockade of ATP-dependent Na(+)-potassium (K+) pump by ouabain enhanced hypoxia-induced membrane depolarizations and/or inward currents. Our findings indicate that, at least for in vitro experiments, the release of EAAs is not required for the acute hypoxia-induced electrical changes in striatal neurons.

UI MeSH Term Description Entries
D008297 Male Males
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010042 Ouabain A cardioactive glycoside consisting of rhamnose and ouabagenin, obtained from the seeds of Strophanthus gratus and other plants of the Apocynaceae; used like DIGITALIS. It is commonly used in cell biological studies as an inhibitor of the NA(+)-K(+)-EXCHANGING ATPASE. Acocantherin,G-Strophanthin,Acolongifloroside K,G Strophanthin
D002534 Hypoxia, Brain A reduction in brain oxygen supply due to ANOXEMIA (a reduced amount of oxygen being carried in the blood by HEMOGLOBIN), or to a restriction of the blood supply to the brain, or both. Severe hypoxia is referred to as anoxia and is a relatively common cause of injury to the central nervous system. Prolonged brain anoxia may lead to BRAIN DEATH or a PERSISTENT VEGETATIVE STATE. Histologically, this condition is characterized by neuronal loss which is most prominent in the HIPPOCAMPUS; GLOBUS PALLIDUS; CEREBELLUM; and inferior olives. Anoxia, Brain,Anoxic Encephalopathy,Brain Hypoxia,Cerebral Anoxia,Encephalopathy, Hypoxic,Hypoxic Encephalopathy,Anoxia, Cerebral,Anoxic Brain Damage,Brain Anoxia,Cerebral Hypoxia,Hypoxia, Cerebral,Hypoxic Brain Damage,Anoxic Encephalopathies,Brain Damage, Anoxic,Brain Damage, Hypoxic,Damage, Anoxic Brain,Damage, Hypoxic Brain,Encephalopathies, Anoxic,Encephalopathies, Hypoxic,Encephalopathy, Anoxic,Hypoxic Encephalopathies
D003342 Corpus Striatum Striped GRAY MATTER and WHITE MATTER consisting of the NEOSTRIATUM and paleostriatum (GLOBUS PALLIDUS). It is located in front of and lateral to the THALAMUS in each cerebral hemisphere. The gray substance is made up of the CAUDATE NUCLEUS and the lentiform nucleus (the latter consisting of the GLOBUS PALLIDUS and PUTAMEN). The WHITE MATTER is the INTERNAL CAPSULE. Lenticular Nucleus,Lentiform Nucleus,Lentiform Nuclei,Nucleus Lentiformis,Lentiformis, Nucleus,Nuclei, Lentiform,Nucleus, Lenticular,Nucleus, Lentiform,Striatum, Corpus
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013779 Tetrodotoxin An aminoperhydroquinazoline poison found mainly in the liver and ovaries of fishes in the order TETRAODONTIFORMES, which are eaten. The toxin causes paresthesia and paralysis through interference with neuromuscular conduction. Fugu Toxin,Tarichatoxin,Tetradotoxin,Toxin, Fugu
D016194 Receptors, N-Methyl-D-Aspartate A class of ionotropic glutamate receptors characterized by affinity for N-methyl-D-aspartate. NMDA receptors have an allosteric binding site for glycine which must be occupied for the channel to open efficiently and a site within the channel itself to which magnesium ions bind in a voltage-dependent manner. The positive voltage dependence of channel conductance and the high permeability of the conducting channel to calcium ions (as well as to monovalent cations) are important in excitotoxicity and neuronal plasticity. N-Methyl-D-Aspartate Receptor,N-Methyl-D-Aspartate Receptors,NMDA Receptor,NMDA Receptor-Ionophore Complex,NMDA Receptors,Receptors, NMDA,N-Methylaspartate Receptors,Receptors, N-Methylaspartate,N Methyl D Aspartate Receptor,N Methyl D Aspartate Receptors,N Methylaspartate Receptors,NMDA Receptor Ionophore Complex,Receptor, N-Methyl-D-Aspartate,Receptor, NMDA,Receptors, N Methyl D Aspartate,Receptors, N Methylaspartate

Related Publications

P Calabresi, and A Pisani, and N B Mercuri, and G Bernardi
January 1983, Progress in neuro-psychopharmacology & biological psychiatry,
P Calabresi, and A Pisani, and N B Mercuri, and G Bernardi
December 2011, Neuroreport,
P Calabresi, and A Pisani, and N B Mercuri, and G Bernardi
January 1997, Life sciences,
P Calabresi, and A Pisani, and N B Mercuri, and G Bernardi
June 2007, Neuroscience,
P Calabresi, and A Pisani, and N B Mercuri, and G Bernardi
March 2014, Movement disorders : official journal of the Movement Disorder Society,
P Calabresi, and A Pisani, and N B Mercuri, and G Bernardi
August 1996, Brain research. Developmental brain research,
P Calabresi, and A Pisani, and N B Mercuri, and G Bernardi
February 2024, Sensors (Basel, Switzerland),
P Calabresi, and A Pisani, and N B Mercuri, and G Bernardi
September 1989, Biulleten' eksperimental'noi biologii i meditsiny,
P Calabresi, and A Pisani, and N B Mercuri, and G Bernardi
January 2011, The Journal of neuroscience : the official journal of the Society for Neuroscience,
P Calabresi, and A Pisani, and N B Mercuri, and G Bernardi
April 1980, The Journal of general physiology,
Copied contents to your clipboard!